TPTP Problem File: SET889+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET889+1 : TPTP v9.0.0. Bugfixed v4.0.0.
% Domain : Set theory
% Problem : powerset(singleton(A)) = unordered_pair(empty_set,singleton(A))
% Version : [Urb06] axioms : Especial.
% English :
% Refs : [Byl90] Bylinski (1990), Some Basic Properties of Sets
% : [Urb06] Urban (2006), Email to G. Sutcliffe
% Source : [Urb06]
% Names : zfmisc_1__t30_zfmisc_1 [Urb06]
% Status : Theorem
% Rating : 0.33 v9.0.0, 0.36 v8.2.0, 0.33 v8.1.0, 0.39 v7.5.0, 0.44 v7.4.0, 0.30 v7.3.0, 0.28 v7.2.0, 0.24 v7.1.0, 0.26 v7.0.0, 0.23 v6.3.0, 0.33 v6.2.0, 0.40 v6.1.0, 0.47 v6.0.0, 0.52 v5.5.0, 0.56 v5.4.0, 0.54 v5.3.0, 0.59 v5.2.0, 0.45 v5.1.0, 0.48 v5.0.0, 0.50 v4.1.0, 0.48 v4.0.1, 0.52 v4.0.0
% Syntax : Number of formulae : 11 ( 6 unt; 0 def)
% Number of atoms : 21 ( 9 equ)
% Maximal formula atoms : 4 ( 1 avg)
% Number of connectives : 12 ( 2 ~; 2 |; 0 &)
% ( 6 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 4 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 4 ( 3 usr; 0 prp; 1-2 aty)
% Number of functors : 4 ( 4 usr; 1 con; 0-2 aty)
% Number of variables : 21 ( 19 !; 2 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
% Bugfixes : v4.0.0 - Removed duplicate formula t2_tarski
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(commutativity_k2_tarski,axiom,
! [A,B] : unordered_pair(A,B) = unordered_pair(B,A) ).
fof(d1_zfmisc_1,axiom,
! [A,B] :
( B = powerset(A)
<=> ! [C] :
( in(C,B)
<=> subset(C,A) ) ) ).
fof(d2_tarski,axiom,
! [A,B,C] :
( C = unordered_pair(A,B)
<=> ! [D] :
( in(D,C)
<=> ( D = A
| D = B ) ) ) ).
fof(fc1_xboole_0,axiom,
empty(empty_set) ).
fof(l4_zfmisc_1,axiom,
! [A,B] :
( subset(A,singleton(B))
<=> ( A = empty_set
| A = singleton(B) ) ) ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : subset(A,A) ).
fof(t2_tarski,axiom,
! [A,B] :
( ! [C] :
( in(C,A)
<=> in(C,B) )
=> A = B ) ).
fof(t30_zfmisc_1,conjecture,
! [A] : powerset(singleton(A)) = unordered_pair(empty_set,singleton(A)) ).
%------------------------------------------------------------------------------