TPTP Problem File: SET883+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET883+1 : TPTP v9.0.0. Released v3.2.0.
% Domain : Set theory
% Problem : subset(singleton(A),singleton(B)) => A = B
% Version : [Urb06] axioms : Especial.
% English :
% Refs : [Byl90] Bylinski (1990), Some Basic Properties of Sets
% : [Urb06] Urban (2006), Email to G. Sutcliffe
% Source : [Urb06]
% Names : zfmisc_1__t24_zfmisc_1 [Urb06]
% Status : Theorem
% Rating : 0.00 v6.4.0, 0.04 v6.1.0, 0.07 v6.0.0, 0.09 v5.5.0, 0.04 v5.3.0, 0.11 v5.2.0, 0.05 v5.0.0, 0.04 v3.7.0, 0.05 v3.3.0, 0.00 v3.2.0
% Syntax : Number of formulae : 5 ( 3 unt; 0 def)
% Number of atoms : 7 ( 2 equ)
% Maximal formula atoms : 2 ( 1 avg)
% Number of connectives : 3 ( 1 ~; 0 |; 0 &)
% ( 0 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 4 ( 3 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 1-2 aty)
% Number of functors : 1 ( 1 usr; 0 con; 1-1 aty)
% Number of variables : 8 ( 6 !; 2 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(reflexivity_r1_tarski,axiom,
! [A,B] : subset(A,A) ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(t24_zfmisc_1,conjecture,
! [A,B] :
( subset(singleton(A),singleton(B))
=> A = B ) ).
fof(t6_zfmisc_1,axiom,
! [A,B] :
( subset(singleton(A),singleton(B))
=> A = B ) ).
%------------------------------------------------------------------------------