TPTP Problem File: SET853-2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET853-2 : TPTP v9.0.0. Released v3.2.0.
% Domain : Set Theory
% Problem : Problem about Zorn's lemma
% Version : [Pau06] axioms : Reduced > Especial.
% English :
% Refs : [Pau06] Paulson (2006), Email to G. Sutcliffe
% Source : [Pau06]
% Names :
% Status : Unsatisfiable
% Rating : 0.05 v9.0.0, 0.10 v8.1.0, 0.00 v7.5.0, 0.05 v7.4.0, 0.06 v7.3.0, 0.17 v7.1.0, 0.08 v7.0.0, 0.27 v6.4.0, 0.20 v6.3.0, 0.18 v6.2.0, 0.10 v6.1.0, 0.14 v6.0.0, 0.10 v5.4.0, 0.15 v5.3.0, 0.22 v5.2.0, 0.12 v5.1.0, 0.18 v5.0.0, 0.14 v4.1.0, 0.23 v4.0.1, 0.18 v4.0.0, 0.09 v3.7.0, 0.10 v3.5.0, 0.09 v3.4.0, 0.17 v3.3.0, 0.21 v3.2.0
% Syntax : Number of clauses : 13 ( 6 unt; 5 nHn; 11 RR)
% Number of literals : 35 ( 4 equ; 17 neg)
% Maximal clause size : 5 ( 2 avg)
% Maximal term depth : 3 ( 2 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-3 aty)
% Number of functors : 8 ( 8 usr; 4 con; 0-3 aty)
% Number of variables : 26 ( 2 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : The problems in the [Pau06] collection each have very many axioms,
% of which only a small selection are required for the refutation.
% The mission is to find those few axioms, after which a refutation
% can be quite easily found. This version has only the necessary
% axioms.
%------------------------------------------------------------------------------
cnf(cls_conjecture_0,negated_conjecture,
c_in(v_x,c_Zorn_OTFin(v_S,t_a),tc_set(tc_set(t_a))) ).
cnf(cls_conjecture_1,negated_conjecture,
c_in(v_xa,c_Zorn_OTFin(v_S,t_a),tc_set(tc_set(t_a))) ).
cnf(cls_conjecture_2,negated_conjecture,
c_lessequals(v_xa,c_Zorn_Osucc(v_S,v_x,t_a),tc_set(tc_set(t_a))) ).
cnf(cls_conjecture_3,negated_conjecture,
v_xa != c_Zorn_Osucc(v_S,v_x,t_a) ).
cnf(cls_conjecture_4,negated_conjecture,
~ c_lessequals(c_Zorn_Osucc(v_S,v_xa,t_a),c_Zorn_Osucc(v_S,v_x,t_a),tc_set(tc_set(t_a))) ).
cnf(cls_conjecture_5,negated_conjecture,
( c_lessequals(c_Zorn_Osucc(v_S,V_U,t_a),v_x,tc_set(tc_set(t_a)))
| V_U = v_x
| ~ c_lessequals(V_U,v_x,tc_set(tc_set(t_a)))
| ~ c_in(V_U,c_Zorn_OTFin(v_S,t_a),tc_set(tc_set(t_a))) ) ).
cnf(cls_Set_Osubset__antisym_0,axiom,
( ~ c_lessequals(V_B,V_A,tc_set(T_a))
| ~ c_lessequals(V_A,V_B,tc_set(T_a))
| V_A = V_B ) ).
cnf(cls_Set_Osubset__refl_0,axiom,
c_lessequals(V_A,V_A,tc_set(T_a)) ).
cnf(cls_Zorn_OTFin__linear__lemma1_0,axiom,
( ~ c_in(V_m,c_Zorn_OTFin(V_S,T_a),tc_set(tc_set(T_a)))
| ~ c_in(V_n,c_Zorn_OTFin(V_S,T_a),tc_set(tc_set(T_a)))
| c_in(c_Zorn_OTFin__linear__lemma1__1(V_S,V_m,T_a),c_Zorn_OTFin(V_S,T_a),tc_set(tc_set(T_a)))
| c_lessequals(V_n,V_m,tc_set(tc_set(T_a)))
| c_lessequals(c_Zorn_Osucc(V_S,V_m,T_a),V_n,tc_set(tc_set(T_a))) ) ).
cnf(cls_Zorn_OTFin__linear__lemma1_1,axiom,
( ~ c_in(V_m,c_Zorn_OTFin(V_S,T_a),tc_set(tc_set(T_a)))
| ~ c_in(V_n,c_Zorn_OTFin(V_S,T_a),tc_set(tc_set(T_a)))
| c_lessequals(V_n,V_m,tc_set(tc_set(T_a)))
| c_lessequals(c_Zorn_OTFin__linear__lemma1__1(V_S,V_m,T_a),V_m,tc_set(tc_set(T_a)))
| c_lessequals(c_Zorn_Osucc(V_S,V_m,T_a),V_n,tc_set(tc_set(T_a))) ) ).
cnf(cls_Zorn_OTFin__linear__lemma1_2,axiom,
( ~ c_in(V_m,c_Zorn_OTFin(V_S,T_a),tc_set(tc_set(T_a)))
| ~ c_in(V_n,c_Zorn_OTFin(V_S,T_a),tc_set(tc_set(T_a)))
| c_Zorn_OTFin__linear__lemma1__1(V_S,V_m,T_a) != V_m
| c_lessequals(V_n,V_m,tc_set(tc_set(T_a)))
| c_lessequals(c_Zorn_Osucc(V_S,V_m,T_a),V_n,tc_set(tc_set(T_a))) ) ).
cnf(cls_Zorn_OTFin__linear__lemma1_3,axiom,
( ~ c_in(V_m,c_Zorn_OTFin(V_S,T_a),tc_set(tc_set(T_a)))
| ~ c_in(V_n,c_Zorn_OTFin(V_S,T_a),tc_set(tc_set(T_a)))
| ~ c_lessequals(c_Zorn_Osucc(V_S,c_Zorn_OTFin__linear__lemma1__1(V_S,V_m,T_a),T_a),V_m,tc_set(tc_set(T_a)))
| c_lessequals(V_n,V_m,tc_set(tc_set(T_a)))
| c_lessequals(c_Zorn_Osucc(V_S,V_m,T_a),V_n,tc_set(tc_set(T_a))) ) ).
cnf(cls_Zorn_Osucc__trans_0,axiom,
( ~ c_lessequals(V_x,V_y,tc_set(tc_set(T_a)))
| c_lessequals(V_x,c_Zorn_Osucc(V_S,V_y,T_a),tc_set(tc_set(T_a))) ) ).
%------------------------------------------------------------------------------