TPTP Problem File: SET848-2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET848-2 : TPTP v9.0.0. Released v3.2.0.
% Domain : Set Theory
% Problem : Problem about Zorn's lemma
% Version : [Pau06] axioms : Reduced > Especial.
% English :
% Refs : [Pau06] Paulson (2006), Email to G. Sutcliffe
% Source : [Pau06]
% Names :
% Status : Unsatisfiable
% Rating : 0.05 v9.0.0, 0.10 v8.1.0, 0.00 v7.5.0, 0.05 v7.4.0, 0.06 v7.3.0, 0.08 v7.1.0, 0.00 v7.0.0, 0.13 v6.4.0, 0.07 v6.3.0, 0.09 v6.2.0, 0.10 v6.1.0, 0.07 v6.0.0, 0.10 v5.5.0, 0.15 v5.3.0, 0.17 v5.2.0, 0.12 v5.1.0, 0.18 v5.0.0, 0.07 v4.1.0, 0.15 v4.0.1, 0.18 v4.0.0, 0.09 v3.7.0, 0.00 v3.4.0, 0.08 v3.3.0, 0.14 v3.2.0
% Syntax : Number of clauses : 7 ( 3 unt; 1 nHn; 5 RR)
% Number of literals : 12 ( 2 equ; 6 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-3 aty)
% Number of functors : 9 ( 9 usr; 2 con; 0-3 aty)
% Number of variables : 15 ( 1 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : The problems in the [Pau06] collection each have very many axioms,
% of which only a small selection are required for the refutation.
% The mission is to find those few axioms, after which a refutation
% can be quite easily found. This version has only the necessary
% axioms.
%------------------------------------------------------------------------------
cnf(cls_Set_ODiffI_0,axiom,
( ~ c_in(V_c,V_A,T_a)
| c_in(V_c,V_B,T_a)
| c_in(V_c,c_minus(V_A,V_B,tc_set(T_a)),T_a) ) ).
cnf(cls_Set_Osubset__refl_0,axiom,
c_lessequals(V_A,V_A,tc_set(T_a)) ).
cnf(cls_Zorn_OTFin__UnionI_0,axiom,
( ~ c_lessequals(V_Y,c_Zorn_OTFin(V_S,T_a),tc_set(tc_set(tc_set(T_a))))
| c_in(c_Union(V_Y,tc_set(T_a)),c_Zorn_OTFin(V_S,T_a),tc_set(tc_set(T_a))) ) ).
cnf(cls_Zorn_OTFin__chain__lemma4_0,axiom,
( ~ c_in(V_c,c_Zorn_OTFin(V_S,T_a),tc_set(tc_set(T_a)))
| c_in(V_c,c_Zorn_Ochain(V_S,T_a),tc_set(tc_set(T_a))) ) ).
cnf(cls_Zorn_Osucc__not__equals_0,axiom,
( ~ c_in(V_c,c_minus(c_Zorn_Ochain(V_S,T_a),c_Zorn_Omaxchain(V_S,T_a),tc_set(tc_set(tc_set(T_a)))),tc_set(tc_set(T_a)))
| c_Zorn_Osucc(V_S,V_c,T_a) != V_c ) ).
cnf(cls_conjecture_0,negated_conjecture,
~ c_in(c_Union(c_Zorn_OTFin(v_S,t_a),tc_set(t_a)),c_Zorn_Omaxchain(v_S,t_a),tc_set(tc_set(t_a))) ).
cnf(cls_conjecture_1,negated_conjecture,
c_Zorn_Osucc(v_S,c_Union(c_Zorn_OTFin(v_S,t_a),tc_set(t_a)),t_a) = c_Union(c_Zorn_OTFin(v_S,t_a),tc_set(t_a)) ).
%------------------------------------------------------------------------------