TPTP Problem File: SET847-2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET847-2 : TPTP v9.0.0. Released v3.2.0.
% Domain : Set Theory
% Problem : Problem about Zorn's lemma
% Version : [Pau06] axioms : Reduced > Especial.
% English :
% Refs : [Pau06] Paulson (2006), Email to G. Sutcliffe
% Source : [Pau06]
% Names :
% Status : Unsatisfiable
% Rating : 0.05 v9.0.0, 0.10 v8.1.0, 0.00 v7.5.0, 0.05 v7.4.0, 0.06 v7.3.0, 0.08 v7.1.0, 0.00 v7.0.0, 0.07 v6.4.0, 0.00 v6.3.0, 0.09 v6.2.0, 0.00 v6.1.0, 0.14 v6.0.0, 0.00 v5.5.0, 0.30 v5.4.0, 0.25 v5.3.0, 0.33 v5.2.0, 0.12 v5.1.0, 0.18 v5.0.0, 0.21 v4.1.0, 0.31 v4.0.1, 0.36 v3.7.0, 0.10 v3.5.0, 0.18 v3.4.0, 0.25 v3.3.0, 0.29 v3.2.0
% Syntax : Number of clauses : 11 ( 4 unt; 2 nHn; 7 RR)
% Number of literals : 20 ( 3 equ; 10 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-3 aty)
% Number of functors : 11 ( 11 usr; 3 con; 0-3 aty)
% Number of variables : 28 ( 6 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : The problems in the [Pau06] collection each have very many axioms,
% of which only a small selection are required for the refutation.
% The mission is to find those few axioms, after which a refutation
% can be quite easily found. This version has only the necessary
% axioms.
%------------------------------------------------------------------------------
cnf(cls_Set_ODiffI_0,axiom,
( ~ c_in(V_c,V_A,T_a)
| c_in(V_c,V_B,T_a)
| c_in(V_c,c_minus(V_A,V_B,tc_set(T_a)),T_a) ) ).
cnf(cls_Set_OemptyE_0,axiom,
~ c_in(V_a,c_emptyset,T_a) ).
cnf(cls_Set_Oempty__subsetI_0,axiom,
c_lessequals(c_emptyset,V_A,tc_set(T_a)) ).
cnf(cls_Set_OsubsetI_0,axiom,
( c_in(c_Main_OsubsetI__1(V_A,V_B,T_a),V_A,T_a)
| c_lessequals(V_A,V_B,tc_set(T_a)) ) ).
cnf(cls_Set_Osubset__antisym_0,axiom,
( ~ c_lessequals(V_B,V_A,tc_set(T_a))
| ~ c_lessequals(V_A,V_B,tc_set(T_a))
| V_A = V_B ) ).
cnf(cls_Set_Osubset__refl_0,axiom,
c_lessequals(V_A,V_A,tc_set(T_a)) ).
cnf(cls_Zorn_OTFin__UnionI_0,axiom,
( ~ c_lessequals(V_Y,c_Zorn_OTFin(V_S,T_a),tc_set(tc_set(tc_set(T_a))))
| c_in(c_Union(V_Y,tc_set(T_a)),c_Zorn_OTFin(V_S,T_a),tc_set(tc_set(T_a))) ) ).
cnf(cls_Zorn_OTFin__chain__lemma4_0,axiom,
( ~ c_in(V_c,c_Zorn_OTFin(V_S,T_a),tc_set(tc_set(T_a)))
| c_in(V_c,c_Zorn_Ochain(V_S,T_a),tc_set(tc_set(T_a))) ) ).
cnf(cls_Zorn_Oequal__succ__Union_1,axiom,
( ~ c_in(c_Union(c_Zorn_OTFin(V_S,T_a),tc_set(T_a)),c_Zorn_OTFin(V_S,T_a),tc_set(tc_set(T_a)))
| c_Union(c_Zorn_OTFin(V_S,T_a),tc_set(T_a)) = c_Zorn_Osucc(V_S,c_Union(c_Zorn_OTFin(V_S,T_a),tc_set(T_a)),T_a) ) ).
cnf(cls_Zorn_Osucc__not__equals_0,axiom,
( ~ c_in(V_c,c_minus(c_Zorn_Ochain(V_S,T_a),c_Zorn_Omaxchain(V_S,T_a),tc_set(tc_set(tc_set(T_a)))),tc_set(tc_set(T_a)))
| c_Zorn_Osucc(V_S,V_c,T_a) != V_c ) ).
cnf(cls_conjecture_0,negated_conjecture,
~ c_in(V_U,c_Zorn_Omaxchain(v_S,t_a),tc_set(tc_set(t_a))) ).
%------------------------------------------------------------------------------