TPTP Problem File: SET847-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET847-1 : TPTP v9.0.0. Released v3.2.0.
% Domain : Set Theory
% Problem : Problem about Zorn's lemma
% Version : [Pau06] axioms : Especial.
% English :
% Refs : [Pau06] Paulson (2006), Email to G. Sutcliffe
% Source : [Pau06]
% Names : Zorn__Hausdorff [Pau06]
% Status : Unsatisfiable
% Rating : 0.55 v9.0.0, 0.60 v8.2.0, 0.67 v8.1.0, 0.53 v7.5.0, 0.63 v7.4.0, 0.53 v7.3.0, 0.75 v7.1.0, 0.67 v7.0.0, 0.73 v6.2.0, 0.60 v6.1.0, 0.71 v6.0.0, 0.80 v5.5.0, 0.90 v5.3.0, 0.94 v5.0.0, 0.86 v4.1.0, 0.85 v4.0.1, 0.82 v4.0.0, 0.91 v3.7.0, 0.80 v3.5.0, 0.82 v3.4.0, 0.83 v3.3.0, 0.86 v3.2.0
% Syntax : Number of clauses : 1364 ( 217 unt; 28 nHn;1278 RR)
% Number of literals : 2574 ( 197 equ;1224 neg)
% Maximal clause size : 4 ( 1 avg)
% Maximal term depth : 5 ( 1 avg)
% Number of predicates : 82 ( 81 usr; 0 prp; 1-3 aty)
% Number of functors : 126 ( 126 usr; 19 con; 0-6 aty)
% Number of variables : 1926 ( 211 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : The problems in the [Pau06] collection each have very many axioms,
% of which only a small selection are required for the refutation.
% The mission is to find those few axioms, after which a refutation
% can be quite easily found.
%------------------------------------------------------------------------------
include('Axioms/MSC001-2.ax').
include('Axioms/MSC001-0.ax').
%------------------------------------------------------------------------------
cnf(cls_Zorn_OTFin_OsuccI_0,axiom,
( ~ c_in(V_x,c_Zorn_OTFin(V_S,T_a),tc_set(tc_set(T_a)))
| c_in(c_Zorn_Osucc(V_S,V_x,T_a),c_Zorn_OTFin(V_S,T_a),tc_set(tc_set(T_a))) ) ).
cnf(cls_Zorn_OTFin__UnionI_0,axiom,
( ~ c_lessequals(V_Y,c_Zorn_OTFin(V_S,T_a),tc_set(tc_set(tc_set(T_a))))
| c_in(c_Union(V_Y,tc_set(T_a)),c_Zorn_OTFin(V_S,T_a),tc_set(tc_set(T_a))) ) ).
cnf(cls_Zorn_OTFin__chain__lemma4_0,axiom,
( ~ c_in(V_c,c_Zorn_OTFin(V_S,T_a),tc_set(tc_set(T_a)))
| c_in(V_c,c_Zorn_Ochain(V_S,T_a),tc_set(tc_set(T_a))) ) ).
cnf(cls_Zorn_Oequal__succ__Union_0,axiom,
( ~ c_in(V_m,c_Zorn_OTFin(V_S,T_a),tc_set(tc_set(T_a)))
| V_m != c_Zorn_Osucc(V_S,V_m,T_a)
| V_m = c_Union(c_Zorn_OTFin(V_S,T_a),tc_set(T_a)) ) ).
cnf(cls_Zorn_Oequal__succ__Union_1,axiom,
( ~ c_in(c_Union(c_Zorn_OTFin(V_S,T_a),tc_set(T_a)),c_Zorn_OTFin(V_S,T_a),tc_set(tc_set(T_a)))
| c_Union(c_Zorn_OTFin(V_S,T_a),tc_set(T_a)) = c_Zorn_Osucc(V_S,c_Union(c_Zorn_OTFin(V_S,T_a),tc_set(T_a)),T_a) ) ).
cnf(cls_Zorn_Osucc__not__equals_0,axiom,
( ~ c_in(V_c,c_minus(c_Zorn_Ochain(V_S,T_a),c_Zorn_Omaxchain(V_S,T_a),tc_set(tc_set(tc_set(T_a)))),tc_set(tc_set(T_a)))
| c_Zorn_Osucc(V_S,V_c,T_a) != V_c ) ).
cnf(cls_conjecture_0,negated_conjecture,
~ c_in(V_U,c_Zorn_Omaxchain(v_S,t_a),tc_set(tc_set(t_a))) ).
%------------------------------------------------------------------------------