TPTP Problem File: SET844-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET844-1 : TPTP v9.0.0. Released v3.2.0.
% Domain : Set Theory
% Problem : Problem about Zorn's lemma
% Version : [Pau06] axioms : Especial.
% English :
% Refs : [Pau06] Paulson (2006), Email to G. Sutcliffe
% Source : [Pau06]
% Names : Zorn__equal_succ_Union_simpler_1 [Pau06]
% Status : Unsatisfiable
% Rating : 0.05 v8.1.0, 0.11 v7.5.0, 0.21 v7.4.0, 0.12 v7.3.0, 0.00 v7.0.0, 0.27 v6.4.0, 0.20 v6.3.0, 0.09 v6.2.0, 0.20 v6.1.0, 0.29 v6.0.0, 0.20 v5.5.0, 0.70 v5.4.0, 0.65 v5.3.0, 0.67 v5.2.0, 0.56 v5.1.0, 0.65 v5.0.0, 0.64 v4.1.0, 0.62 v4.0.1, 0.45 v3.7.0, 0.20 v3.5.0, 0.27 v3.4.0, 0.33 v3.3.0, 0.50 v3.2.0
% Syntax : Number of clauses : 1367 ( 220 unt; 29 nHn;1279 RR)
% Number of literals : 2578 ( 195 equ;1223 neg)
% Maximal clause size : 4 ( 1 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 82 ( 81 usr; 0 prp; 1-3 aty)
% Number of functors : 126 ( 126 usr; 20 con; 0-6 aty)
% Number of variables : 1930 ( 211 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : The problems in the [Pau06] collection each have very many axioms,
% of which only a small selection are required for the refutation.
% The mission is to find those few axioms, after which a refutation
% can be quite easily found.
%------------------------------------------------------------------------------
include('Axioms/MSC001-2.ax').
include('Axioms/MSC001-0.ax').
%------------------------------------------------------------------------------
cnf(cls_Set_OUnion__least_0,axiom,
( c_in(c_Main_OUnion__least__1(V_A,V_C,T_a),V_A,tc_set(T_a))
| c_lessequals(c_Union(V_A,T_a),V_C,tc_set(T_a)) ) ).
cnf(cls_Set_OUnion__least_1,axiom,
( ~ c_lessequals(c_Main_OUnion__least__1(V_A,V_C,T_a),V_C,tc_set(T_a))
| c_lessequals(c_Union(V_A,T_a),V_C,tc_set(T_a)) ) ).
cnf(cls_Set_OUnion__upper_0,axiom,
( ~ c_in(V_B,V_A,tc_set(T_a))
| c_lessequals(V_B,c_Union(V_A,T_a),tc_set(T_a)) ) ).
cnf(cls_Zorn_OAbrial__axiom1_0,axiom,
c_lessequals(V_x,c_Zorn_Osucc(V_S,V_x,T_a),tc_set(tc_set(T_a))) ).
cnf(cls_Zorn_OTFin_OsuccI_0,axiom,
( ~ c_in(V_x,c_Zorn_OTFin(V_S,T_a),tc_set(tc_set(T_a)))
| c_in(c_Zorn_Osucc(V_S,V_x,T_a),c_Zorn_OTFin(V_S,T_a),tc_set(tc_set(T_a))) ) ).
cnf(cls_Zorn_OTFin__UnionI_0,axiom,
( ~ c_lessequals(V_Y,c_Zorn_OTFin(V_S,T_a),tc_set(tc_set(tc_set(T_a))))
| c_in(c_Union(V_Y,tc_set(T_a)),c_Zorn_OTFin(V_S,T_a),tc_set(tc_set(T_a))) ) ).
cnf(cls_Zorn_Oeq__succ__upper_0,axiom,
( ~ c_in(V_m,c_Zorn_OTFin(V_S,T_a),tc_set(tc_set(T_a)))
| ~ c_in(V_n,c_Zorn_OTFin(V_S,T_a),tc_set(tc_set(T_a)))
| V_m != c_Zorn_Osucc(V_S,V_m,T_a)
| c_lessequals(V_n,V_m,tc_set(tc_set(T_a))) ) ).
cnf(cls_conjecture_0,negated_conjecture,
c_in(v_m,c_Zorn_OTFin(v_S,t_a),tc_set(tc_set(t_a))) ).
cnf(cls_conjecture_1,negated_conjecture,
v_m = c_Zorn_Osucc(v_S,v_m,t_a) ).
cnf(cls_conjecture_2,negated_conjecture,
~ c_lessequals(c_Union(c_Zorn_OTFin(v_S,t_a),tc_set(t_a)),v_m,tc_set(tc_set(t_a))) ).
%------------------------------------------------------------------------------