TPTP Problem File: SET837-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET837-1 : TPTP v9.0.0. Released v3.2.0.
% Domain : Set Theory
% Problem : Problem about set theory
% Version : [Pau06] axioms : Especial.
% English :
% Refs : [Pau06] Paulson (2006), Email to G. Sutcliffe
% Source : [Pau06]
% Names : set__equal_union [Pau06]
% Status : Unsatisfiable
% Rating : 0.70 v9.0.0, 0.75 v8.2.0, 0.71 v8.1.0, 0.63 v7.5.0, 0.74 v7.4.0, 0.71 v7.3.0, 0.83 v7.1.0, 0.75 v7.0.0, 0.87 v6.4.0, 0.93 v6.3.0, 0.91 v6.2.0, 0.80 v6.1.0, 0.93 v6.0.0, 0.90 v5.5.0, 0.95 v5.3.0, 1.00 v5.2.0, 0.94 v5.0.0, 0.93 v4.1.0, 1.00 v3.2.0
% Syntax : Number of clauses : 1363 ( 216 unt; 31 nHn;1277 RR)
% Number of literals : 2580 ( 199 equ;1227 neg)
% Maximal clause size : 4 ( 1 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 82 ( 81 usr; 0 prp; 1-3 aty)
% Number of functors : 125 ( 125 usr; 22 con; 0-6 aty)
% Number of variables : 1909 ( 210 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : The problems in the [Pau06] collection each have very many axioms,
% of which only a small selection are required for the refutation.
% The mission is to find those few axioms, after which a refutation
% can be quite easily found.
%------------------------------------------------------------------------------
include('Axioms/MSC001-2.ax').
include('Axioms/MSC001-0.ax').
%------------------------------------------------------------------------------
cnf(cls_conjecture_0,negated_conjecture,
( v_X = c_union(v_Y,v_Z,t_a)
| c_lessequals(v_Y,v_X,tc_set(t_a)) ) ).
cnf(cls_conjecture_1,negated_conjecture,
( v_X = c_union(v_Y,v_Z,t_a)
| c_lessequals(v_Z,v_X,tc_set(t_a)) ) ).
cnf(cls_conjecture_2,negated_conjecture,
( c_lessequals(v_Y,v_x,tc_set(t_a))
| ~ c_lessequals(v_Z,v_X,tc_set(t_a))
| ~ c_lessequals(v_Y,v_X,tc_set(t_a))
| v_X != c_union(v_Y,v_Z,t_a) ) ).
cnf(cls_conjecture_3,negated_conjecture,
( c_lessequals(v_Z,v_x,tc_set(t_a))
| ~ c_lessequals(v_Z,v_X,tc_set(t_a))
| ~ c_lessequals(v_Y,v_X,tc_set(t_a))
| v_X != c_union(v_Y,v_Z,t_a) ) ).
cnf(cls_conjecture_4,negated_conjecture,
( ~ c_lessequals(v_X,v_x,tc_set(t_a))
| ~ c_lessequals(v_Z,v_X,tc_set(t_a))
| ~ c_lessequals(v_Y,v_X,tc_set(t_a))
| v_X != c_union(v_Y,v_Z,t_a) ) ).
cnf(cls_conjecture_5,negated_conjecture,
( v_X = c_union(v_Y,v_Z,t_a)
| c_lessequals(v_X,V_U,tc_set(t_a))
| ~ c_lessequals(v_Z,V_U,tc_set(t_a))
| ~ c_lessequals(v_Y,V_U,tc_set(t_a)) ) ).
%------------------------------------------------------------------------------