TPTP Problem File: SET831-2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET831-2 : TPTP v9.0.0. Released v3.2.0.
% Domain : Set Theory
% Problem : Problem about set theory
% Version : [Pau06] axioms : Reduced > Especial.
% English :
% Refs : [Pau06] Paulson (2006), Email to G. Sutcliffe
% Source : [Pau06]
% Names :
% Status : Unsatisfiable
% Rating : 0.20 v9.0.0, 0.25 v8.2.0, 0.19 v8.1.0, 0.16 v7.5.0, 0.26 v7.4.0, 0.24 v7.3.0, 0.25 v7.1.0, 0.17 v7.0.0, 0.33 v6.4.0, 0.27 v6.2.0, 0.30 v6.1.0, 0.50 v5.5.0, 0.70 v5.3.0, 0.72 v5.2.0, 0.56 v5.1.0, 0.53 v5.0.0, 0.50 v4.1.0, 0.54 v4.0.1, 0.45 v3.7.0, 0.30 v3.5.0, 0.36 v3.4.0, 0.50 v3.3.0, 0.57 v3.2.0
% Syntax : Number of clauses : 13 ( 0 unt; 4 nHn; 12 RR)
% Number of literals : 37 ( 7 equ; 21 neg)
% Maximal clause size : 4 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-3 aty)
% Number of functors : 8 ( 8 usr; 5 con; 0-3 aty)
% Number of variables : 26 ( 2 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : The problems in the [Pau06] collection each have very many axioms,
% of which only a small selection are required for the refutation.
% The mission is to find those few axioms, after which a refutation
% can be quite easily found. This version has only the necessary
% axioms.
%------------------------------------------------------------------------------
cnf(cls_conjecture_0,negated_conjecture,
( v_X = c_inter(v_Y,v_Z,t_a)
| c_lessequals(v_X,v_Y,tc_set(t_a)) ) ).
cnf(cls_conjecture_1,negated_conjecture,
( v_X = c_inter(v_Y,v_Z,t_a)
| c_lessequals(v_X,v_Z,tc_set(t_a)) ) ).
cnf(cls_conjecture_2,negated_conjecture,
( c_lessequals(v_x,v_Y,tc_set(t_a))
| ~ c_lessequals(v_X,v_Z,tc_set(t_a))
| ~ c_lessequals(v_X,v_Y,tc_set(t_a))
| v_X != c_inter(v_Y,v_Z,t_a) ) ).
cnf(cls_conjecture_3,negated_conjecture,
( c_lessequals(v_x,v_Z,tc_set(t_a))
| ~ c_lessequals(v_X,v_Z,tc_set(t_a))
| ~ c_lessequals(v_X,v_Y,tc_set(t_a))
| v_X != c_inter(v_Y,v_Z,t_a) ) ).
cnf(cls_conjecture_4,negated_conjecture,
( ~ c_lessequals(v_x,v_X,tc_set(t_a))
| ~ c_lessequals(v_X,v_Z,tc_set(t_a))
| ~ c_lessequals(v_X,v_Y,tc_set(t_a))
| v_X != c_inter(v_Y,v_Z,t_a) ) ).
cnf(cls_conjecture_5,negated_conjecture,
( v_X = c_inter(v_Y,v_Z,t_a)
| c_lessequals(V_U,v_X,tc_set(t_a))
| ~ c_lessequals(V_U,v_Z,tc_set(t_a))
| ~ c_lessequals(V_U,v_Y,tc_set(t_a)) ) ).
cnf(cls_Set_OIntE_0,axiom,
( ~ c_in(V_c,c_inter(V_A,V_B,T_a),T_a)
| c_in(V_c,V_B,T_a) ) ).
cnf(cls_Set_OIntE_1,axiom,
( ~ c_in(V_c,c_inter(V_A,V_B,T_a),T_a)
| c_in(V_c,V_A,T_a) ) ).
cnf(cls_Set_OIntI_0,axiom,
( ~ c_in(V_c,V_B,T_a)
| ~ c_in(V_c,V_A,T_a)
| c_in(V_c,c_inter(V_A,V_B,T_a),T_a) ) ).
cnf(cls_Set_OsubsetD_0,axiom,
( ~ c_in(V_c,V_A,T_a)
| ~ c_lessequals(V_A,V_B,tc_set(T_a))
| c_in(V_c,V_B,T_a) ) ).
cnf(cls_Set_OsubsetI_0,axiom,
( c_in(c_Main_OsubsetI__1(V_A,V_B,T_a),V_A,T_a)
| c_lessequals(V_A,V_B,tc_set(T_a)) ) ).
cnf(cls_Set_OsubsetI_1,axiom,
( ~ c_in(c_Main_OsubsetI__1(V_A,V_B,T_a),V_B,T_a)
| c_lessequals(V_A,V_B,tc_set(T_a)) ) ).
cnf(cls_Set_Osubset__antisym_0,axiom,
( ~ c_lessequals(V_B,V_A,tc_set(T_a))
| ~ c_lessequals(V_A,V_B,tc_set(T_a))
| V_A = V_B ) ).
%------------------------------------------------------------------------------