TPTP Problem File: SET830-2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET830-2 : TPTP v9.0.0. Released v3.2.0.
% Domain : Set Theory
% Problem : Problem about set theory
% Version : [Pau06] axioms : Reduced > Especial.
% English :
% Refs : [Pau06] Paulson (2006), Email to G. Sutcliffe
% Source : [Pau06]
% Names :
% Status : Unsatisfiable
% Rating : 0.09 v9.0.0, 0.08 v8.2.0, 0.00 v7.4.0, 0.17 v7.1.0, 0.33 v7.0.0, 0.25 v6.3.0, 0.29 v6.2.0, 0.22 v6.1.0, 0.29 v5.5.0, 0.38 v5.4.0, 0.30 v5.2.0, 0.20 v5.1.0, 0.18 v5.0.0, 0.36 v4.1.0, 0.12 v4.0.1, 0.40 v4.0.0, 0.43 v3.4.0, 0.25 v3.3.0, 0.33 v3.2.0
% Syntax : Number of clauses : 10 ( 3 unt; 1 nHn; 9 RR)
% Number of literals : 20 ( 0 equ; 10 neg)
% Maximal clause size : 3 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 2 ( 2 usr; 0 prp; 3-3 aty)
% Number of functors : 8 ( 8 usr; 5 con; 0-3 aty)
% Number of variables : 23 ( 2 sgn)
% SPC : CNF_UNS_RFO_NEQ_NHN
% Comments : The problems in the [Pau06] collection each have very many axioms,
% of which only a small selection are required for the refutation.
% The mission is to find those few axioms, after which a refutation
% can be quite easily found. This version has only the necessary
% axioms.
%------------------------------------------------------------------------------
cnf(cls_Set_OIntE_0,axiom,
( ~ c_in(V_c,c_inter(V_A,V_B,T_a),T_a)
| c_in(V_c,V_B,T_a) ) ).
cnf(cls_Set_OIntE_1,axiom,
( ~ c_in(V_c,c_inter(V_A,V_B,T_a),T_a)
| c_in(V_c,V_A,T_a) ) ).
cnf(cls_Set_OIntI_0,axiom,
( ~ c_in(V_c,V_B,T_a)
| ~ c_in(V_c,V_A,T_a)
| c_in(V_c,c_inter(V_A,V_B,T_a),T_a) ) ).
cnf(cls_Set_OsubsetD_0,axiom,
( ~ c_in(V_c,V_A,T_a)
| ~ c_lessequals(V_A,V_B,tc_set(T_a))
| c_in(V_c,V_B,T_a) ) ).
cnf(cls_Set_OsubsetI_0,axiom,
( c_in(c_Main_OsubsetI__1(V_A,V_B,T_a),V_A,T_a)
| c_lessequals(V_A,V_B,tc_set(T_a)) ) ).
cnf(cls_Set_OsubsetI_1,axiom,
( ~ c_in(c_Main_OsubsetI__1(V_A,V_B,T_a),V_B,T_a)
| c_lessequals(V_A,V_B,tc_set(T_a)) ) ).
cnf(cls_conjecture_2,negated_conjecture,
c_in(v_x,v_Y,t_a) ).
cnf(cls_conjecture_3,negated_conjecture,
c_in(v_x,v_Z,t_a) ).
cnf(cls_conjecture_4,negated_conjecture,
~ c_in(v_x,v_X,t_a) ).
cnf(cls_conjecture_5,negated_conjecture,
( c_lessequals(V_U,v_X,tc_set(t_a))
| ~ c_lessequals(V_U,v_Z,tc_set(t_a))
| ~ c_lessequals(V_U,v_Y,tc_set(t_a)) ) ).
%------------------------------------------------------------------------------