TPTP Problem File: SET825-2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET825-2 : TPTP v9.0.0. Released v3.2.0.
% Domain : Set Theory
% Problem : Problem about set theory
% Version : [Pau06] axioms : Reduced > Especial.
% English :
% Refs : [Pau06] Paulson (2006), Email to G. Sutcliffe
% Source : [Pau06]
% Names :
% Status : Unsatisfiable
% Rating : 0.05 v9.0.0, 0.10 v8.1.0, 0.00 v7.5.0, 0.05 v7.4.0, 0.06 v7.3.0, 0.08 v7.1.0, 0.00 v7.0.0, 0.13 v6.4.0, 0.07 v6.3.0, 0.09 v6.2.0, 0.10 v6.1.0, 0.14 v6.0.0, 0.10 v5.5.0, 0.05 v5.4.0, 0.10 v5.3.0, 0.17 v5.2.0, 0.12 v5.0.0, 0.07 v4.1.0, 0.08 v4.0.1, 0.09 v4.0.0, 0.00 v3.4.0, 0.08 v3.3.0, 0.21 v3.2.0
% Syntax : Number of clauses : 6 ( 3 unt; 1 nHn; 5 RR)
% Number of literals : 11 ( 1 equ; 5 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 1-3 aty)
% Number of functors : 10 ( 10 usr; 5 con; 0-4 aty)
% Number of variables : 7 ( 0 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : The problems in the [Pau06] collection each have very many axioms,
% of which only a small selection are required for the refutation.
% The mission is to find those few axioms, after which a refutation
% can be quite easily found. This version has only the necessary
% axioms.
%------------------------------------------------------------------------------
cnf(cls_Relation_OIdI_0,axiom,
c_in(c_Pair(V_a,V_a,T_a,T_a),c_Relation_OId,tc_prod(T_a,T_a)) ).
cnf(cls_Relation_Opair__in__Id__conv__iff1_0,axiom,
( ~ c_in(c_Pair(V_a,V_b,T_a,T_a),c_Relation_OId,tc_prod(T_a,T_a))
| V_a = V_b ) ).
cnf(cls_conjecture_0,negated_conjecture,
v_Q(v_n) ).
cnf(cls_conjecture_1,negated_conjecture,
~ v_Q(v_m) ).
cnf(cls_conjecture_2,negated_conjecture,
( c_in(c_Pair(v_n,v_m,tc_nat,tc_nat),V_U,tc_prod(tc_nat,tc_nat))
| c_in(c_Pair(v_x(V_U),v_xa(V_U),tc_nat,tc_nat),V_U,tc_prod(tc_nat,tc_nat))
| ~ c_in(c_Pair(c_0,c_0,tc_nat,tc_nat),V_U,tc_prod(tc_nat,tc_nat)) ) ).
cnf(cls_conjecture_3,negated_conjecture,
( c_in(c_Pair(v_n,v_m,tc_nat,tc_nat),V_U,tc_prod(tc_nat,tc_nat))
| ~ c_in(c_Pair(c_Suc(v_x(V_U)),c_Suc(v_xa(V_U)),tc_nat,tc_nat),V_U,tc_prod(tc_nat,tc_nat))
| ~ c_in(c_Pair(c_0,c_0,tc_nat,tc_nat),V_U,tc_prod(tc_nat,tc_nat)) ) ).
%------------------------------------------------------------------------------