TPTP Problem File: SET825-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET825-1 : TPTP v9.0.0. Released v3.2.0.
% Domain : Set Theory
% Problem : Problem about set theory
% Version : [Pau06] axioms : Especial.
% English :
% Refs : [Pau06] Paulson (2006), Email to G. Sutcliffe
% Source : [Pau06]
% Names : set__Bledsoe_Fung_8 [Pau06]
% Status : Unsatisfiable
% Rating : 0.35 v8.2.0, 0.33 v8.1.0, 0.32 v7.4.0, 0.35 v7.3.0, 0.42 v7.1.0, 0.33 v7.0.0, 0.53 v6.3.0, 0.45 v6.2.0, 0.60 v6.1.0, 0.64 v6.0.0, 0.70 v5.5.0, 0.85 v5.3.0, 0.89 v5.2.0, 0.81 v5.1.0, 0.82 v5.0.0, 0.79 v4.1.0, 0.77 v4.0.1, 0.73 v4.0.0, 0.64 v3.7.0, 0.50 v3.5.0, 0.55 v3.4.0, 0.58 v3.3.0, 0.71 v3.2.0
% Syntax : Number of clauses : 1361 ( 218 unt; 29 nHn;1275 RR)
% Number of literals : 2568 ( 193 equ;1219 neg)
% Maximal clause size : 4 ( 1 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 83 ( 82 usr; 0 prp; 1-3 aty)
% Number of functors : 124 ( 124 usr; 19 con; 0-6 aty)
% Number of variables : 1910 ( 210 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : The problems in the [Pau06] collection each have very many axioms,
% of which only a small selection are required for the refutation.
% The mission is to find those few axioms, after which a refutation
% can be quite easily found.
%------------------------------------------------------------------------------
include('Axioms/MSC001-2.ax').
include('Axioms/MSC001-0.ax').
%------------------------------------------------------------------------------
cnf(cls_conjecture_0,negated_conjecture,
v_Q(v_n) ).
cnf(cls_conjecture_1,negated_conjecture,
~ v_Q(v_m) ).
cnf(cls_conjecture_2,negated_conjecture,
( c_in(c_Pair(v_n,v_m,tc_nat,tc_nat),V_U,tc_prod(tc_nat,tc_nat))
| c_in(c_Pair(v_x(V_U),v_xa(V_U),tc_nat,tc_nat),V_U,tc_prod(tc_nat,tc_nat))
| ~ c_in(c_Pair(c_0,c_0,tc_nat,tc_nat),V_U,tc_prod(tc_nat,tc_nat)) ) ).
cnf(cls_conjecture_3,negated_conjecture,
( c_in(c_Pair(v_n,v_m,tc_nat,tc_nat),V_U,tc_prod(tc_nat,tc_nat))
| ~ c_in(c_Pair(c_Suc(v_x(V_U)),c_Suc(v_xa(V_U)),tc_nat,tc_nat),V_U,tc_prod(tc_nat,tc_nat))
| ~ c_in(c_Pair(c_0,c_0,tc_nat,tc_nat),V_U,tc_prod(tc_nat,tc_nat)) ) ).
%------------------------------------------------------------------------------