TPTP Problem File: SET821-2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET821-2 : TPTP v9.0.0. Released v3.2.0.
% Domain : Set Theory
% Problem : Problem about set theory
% Version : [Pau06] axioms : Reduced > Especial.
% English :
% Refs : [Pau06] Paulson (2006), Email to G. Sutcliffe
% Source : [Pau06]
% Names :
% Status : Unsatisfiable
% Rating : 0.10 v9.0.0, 0.15 v8.2.0, 0.14 v8.1.0, 0.05 v7.5.0, 0.11 v7.4.0, 0.12 v7.3.0, 0.25 v7.1.0, 0.17 v7.0.0, 0.27 v6.4.0, 0.20 v6.3.0, 0.18 v6.2.0, 0.20 v6.1.0, 0.21 v6.0.0, 0.20 v5.5.0, 0.25 v5.4.0, 0.30 v5.3.0, 0.33 v5.2.0, 0.25 v5.1.0, 0.29 v4.1.0, 0.38 v4.0.1, 0.45 v3.7.0, 0.20 v3.5.0, 0.27 v3.4.0, 0.33 v3.3.0, 0.43 v3.2.0
% Syntax : Number of clauses : 10 ( 4 unt; 3 nHn; 7 RR)
% Number of literals : 18 ( 1 equ; 7 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 4 ( 3 usr; 0 prp; 1-3 aty)
% Number of functors : 7 ( 7 usr; 4 con; 0-3 aty)
% Number of variables : 20 ( 2 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : The problems in the [Pau06] collection each have very many axioms,
% of which only a small selection are required for the refutation.
% The mission is to find those few axioms, after which a refutation
% can be quite easily found. This version has only the necessary
% axioms.
%------------------------------------------------------------------------------
cnf(cls_Orderings_Oorder__less__irrefl__iff1_0,axiom,
( ~ class_Orderings_Oorder(T_a)
| ~ c_less(V_x,V_x,T_a) ) ).
cnf(cls_Set_OComplD__dest_0,axiom,
( ~ c_in(V_c,V_A,T_a)
| ~ c_in(V_c,c_uminus(V_A,tc_set(T_a)),T_a) ) ).
cnf(cls_Set_OComplI_0,axiom,
( c_in(V_c,V_A,T_a)
| c_in(V_c,c_uminus(V_A,tc_set(T_a)),T_a) ) ).
cnf(cls_Set_OinsertCI_0,axiom,
( ~ c_in(V_a,V_B,T_a)
| c_in(V_a,c_insert(V_b,V_B,T_a),T_a) ) ).
cnf(cls_Set_OinsertCI_1,axiom,
c_in(V_x,c_insert(V_x,V_B,T_a),T_a) ).
cnf(cls_Set_OinsertE_0,axiom,
( ~ c_in(V_a,c_insert(V_b,V_A,T_a),T_a)
| c_in(V_a,V_A,T_a)
| V_a = V_b ) ).
cnf(cls_conjecture_0,negated_conjecture,
c_less(v_a,v_b,tc_IntDef_Oint) ).
cnf(cls_conjecture_1,negated_conjecture,
c_less(v_b,v_c,tc_IntDef_Oint) ).
cnf(cls_conjecture_2,negated_conjecture,
( c_in(v_c,V_U,tc_IntDef_Oint)
| ~ c_in(v_b,V_U,tc_IntDef_Oint)
| c_in(v_a,V_U,tc_IntDef_Oint) ) ).
cnf(clsarity_IntDef__Oint_31,axiom,
class_Orderings_Oorder(tc_IntDef_Oint) ).
%------------------------------------------------------------------------------