TPTP Problem File: SET815+4.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET815+4 : TPTP v9.0.0. Released v3.2.0.
% Domain : Set Theory (Order relations)
% Problem : An ordinal number is equal to the sum of its successor
% Version : [Pas05] axioms.
% English :
% Refs : [Pas05] Pastre (2005), Email to G. Sutcliffe
% Source : [Pas05]
% Names :
% Status : Theorem
% Rating : 0.85 v9.0.0, 0.83 v8.2.0, 0.86 v7.5.0, 0.88 v7.4.0, 0.80 v7.3.0, 0.79 v7.1.0, 0.74 v7.0.0, 0.83 v6.4.0, 0.85 v6.3.0, 0.79 v6.2.0, 0.80 v6.1.0, 0.83 v6.0.0, 0.91 v5.5.0, 0.93 v5.2.0, 0.95 v5.0.0, 0.96 v3.7.0, 0.95 v3.3.0, 0.93 v3.2.0
% Syntax : Number of formulae : 21 ( 1 unt; 0 def)
% Number of atoms : 69 ( 4 equ)
% Maximal formula atoms : 11 ( 3 avg)
% Number of connectives : 51 ( 3 ~; 3 |; 16 &)
% ( 17 <=>; 12 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 6 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 9 ( 8 usr; 0 prp; 1-3 aty)
% Number of functors : 13 ( 13 usr; 3 con; 0-3 aty)
% Number of variables : 59 ( 56 !; 3 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%------------------------------------------------------------------------------
%----Include set theory definitions
include('Axioms/SET006+0.ax').
%----Include ordinal numbers axioms
include('Axioms/SET006+4.ax').
%------------------------------------------------------------------------------
fof(thI44,axiom,
! [A,X] :
( member(X,A)
=> subset(singleton(X),A) ) ).
fof(thV15,conjecture,
! [A] :
( member(A,on)
=> equal_set(sum(suc(A)),A) ) ).
%------------------------------------------------------------------------------