TPTP Problem File: SET811+4.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET811+4 : TPTP v9.0.0. Released v3.2.0.
% Domain : Set Theory (Order relations)
% Problem : A member of an ordinal number is an initial segment
% Version : [Pas05] axioms.
% English :
% Refs : [Pas05] Pastre (2005), Email to G. Sutcliffe
% Source : [Pas05]
% Names :
% Status : Theorem
% Rating : 0.45 v9.0.0, 0.47 v8.2.0, 0.53 v8.1.0, 0.50 v7.5.0, 0.53 v7.4.0, 0.43 v7.3.0, 0.41 v7.2.0, 0.38 v7.1.0, 0.39 v7.0.0, 0.57 v6.4.0, 0.58 v6.3.0, 0.50 v6.2.0, 0.60 v6.1.0, 0.63 v6.0.0, 0.65 v5.5.0, 0.63 v5.4.0, 0.68 v5.3.0, 0.74 v5.2.0, 0.70 v5.1.0, 0.71 v5.0.0, 0.75 v4.1.0, 0.74 v4.0.1, 0.78 v4.0.0, 0.79 v3.7.0, 0.75 v3.5.0, 0.79 v3.4.0, 0.89 v3.3.0, 0.86 v3.2.0
% Syntax : Number of formulae : 20 ( 1 unt; 0 def)
% Number of atoms : 68 ( 4 equ)
% Maximal formula atoms : 11 ( 3 avg)
% Number of connectives : 51 ( 3 ~; 3 |; 16 &)
% ( 17 <=>; 12 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 6 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 9 ( 8 usr; 0 prp; 1-3 aty)
% Number of functors : 13 ( 13 usr; 3 con; 0-3 aty)
% Number of variables : 58 ( 55 !; 3 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%------------------------------------------------------------------------------
%----Include set theory definitions
include('Axioms/SET006+0.ax').
%----Include ordinal numbers axioms
include('Axioms/SET006+4.ax').
%------------------------------------------------------------------------------
fof(thV5,conjecture,
! [A] :
( member(A,on)
=> ! [X] :
( member(X,A)
=> equal_set(X,initial_segment(X,member_predicate,A)) ) ) ).
%------------------------------------------------------------------------------