TPTP Problem File: SET803+4.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET803+4 : TPTP v9.0.0. Released v3.2.0.
% Domain : Set Theory (Order relations)
% Problem : Two different maximal elements implies no greatest element
% Version : [Pas05] axioms.
% English :
% Refs : [Pas05] Pastre (2005), Email to G. Sutcliffe
% Source : [Pas05]
% Names :
% Status : Theorem
% Rating : 0.06 v9.0.0, 0.08 v8.2.0, 0.06 v8.1.0, 0.03 v7.1.0, 0.04 v7.0.0, 0.03 v6.4.0, 0.04 v6.2.0, 0.08 v6.1.0, 0.07 v6.0.0, 0.04 v5.5.0, 0.00 v5.4.0, 0.04 v5.3.0, 0.07 v5.2.0, 0.05 v5.0.0, 0.04 v3.7.0, 0.14 v3.5.0, 0.00 v3.4.0, 0.08 v3.3.0, 0.00 v3.2.0
% Syntax : Number of formulae : 11 ( 0 unt; 0 def)
% Number of atoms : 61 ( 4 equ)
% Maximal formula atoms : 14 ( 5 avg)
% Number of connectives : 52 ( 2 ~; 1 |; 23 &)
% ( 10 <=>; 16 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 9 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 13 ( 12 usr; 0 prp; 2-4 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 51 ( 50 !; 1 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%------------------------------------------------------------------------------
%----Include order relation axioms
include('Axioms/SET006+3.ax').
%------------------------------------------------------------------------------
fof(thIV15,conjecture,
! [R,E] :
( order(R,E)
=> ! [M1,M2] :
( ( max(M1,R,E)
& max(M2,R,E)
& M1 != M2 )
=> ~ ? [M] : greatest(M,R,E) ) ) ).
%------------------------------------------------------------------------------