TPTP Problem File: SET794+4.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET794+4 : TPTP v9.0.0. Released v3.2.0.
% Domain : Set Theory (Order relations)
% Problem : If the order is total, a minimal element is the least element
% Version : [Pas05] axioms.
% English :
% Refs : [Pas05] Pastre (2005), Email to G. Sutcliffe
% Source : [Pas05]
% Names :
% Status : Theorem
% Rating : 0.09 v9.0.0, 0.11 v8.2.0, 0.08 v8.1.0, 0.06 v7.4.0, 0.07 v7.2.0, 0.03 v7.1.0, 0.04 v7.0.0, 0.03 v6.4.0, 0.08 v6.1.0, 0.07 v6.0.0, 0.04 v5.4.0, 0.00 v5.3.0, 0.04 v5.2.0, 0.05 v5.0.0, 0.04 v3.7.0, 0.00 v3.2.0
% Syntax : Number of formulae : 11 ( 0 unt; 0 def)
% Number of atoms : 59 ( 3 equ)
% Maximal formula atoms : 14 ( 5 avg)
% Number of connectives : 48 ( 0 ~; 1 |; 22 &)
% ( 10 <=>; 15 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 9 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 13 ( 12 usr; 0 prp; 2-4 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 49 ( 49 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%------------------------------------------------------------------------------
%----Include order relation axioms
include('Axioms/SET006+3.ax').
%------------------------------------------------------------------------------
fof(thIV6,conjecture,
! [R,E,M] :
( ( total_order(R,E)
& min(M,R,E) )
=> least(M,R,E) ) ).
%------------------------------------------------------------------------------