TPTP Problem File: SET787-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET787-1 : TPTP v9.0.0. Released v2.7.0.
% Domain : Set Theory
% Problem : un_eq_Union_2_c2
% Version : Especial.
% English :
% Refs : [Men03] Meng (2003), Email to G. Sutcliffe
% Source : [Men03]
% Names :
% Status : Unsatisfiable
% Rating : 0.05 v9.0.0, 0.10 v8.1.0, 0.00 v7.5.0, 0.05 v7.4.0, 0.06 v7.3.0, 0.08 v7.1.0, 0.00 v7.0.0, 0.07 v6.4.0, 0.00 v6.3.0, 0.09 v6.2.0, 0.00 v6.1.0, 0.07 v6.0.0, 0.00 v5.4.0, 0.05 v5.3.0, 0.11 v5.2.0, 0.06 v5.1.0, 0.12 v5.0.0, 0.07 v4.1.0, 0.15 v4.0.1, 0.18 v4.0.0, 0.09 v3.7.0, 0.00 v3.4.0, 0.08 v3.3.0, 0.14 v3.2.0, 0.15 v3.1.0, 0.27 v2.7.0
% Syntax : Number of clauses : 14 ( 3 unt; 2 nHn; 11 RR)
% Number of literals : 26 ( 2 equ; 12 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-2 aty)
% Number of functors : 15 ( 15 usr; 4 con; 0-2 aty)
% Number of variables : 28 ( 4 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : Problem coming out of an Isabelle proof.
%--------------------------------------------------------------------------
%----two clauses for UnionE
cnf(clause119,axiom,
( ~ member(U,union(V))
| member(U,unionE_sk1(U,V)) ) ).
cnf(clause120,axiom,
( ~ member(U,union(V))
| member(unionE_sk1(U,V),V) ) ).
%----two clauses for subsetI
cnf(clause131,axiom,
( member(subsetI_sk1(A,B),A)
| subset(A,B) ) ).
cnf(clause132,axiom,
( ~ member(subsetI_sk1(A,B),B)
| subset(A,B) ) ).
%----consE
cnf(clause112,axiom,
( ~ member(U,cons(V,W))
| U = V
| member(U,W) ) ).
%----UnI1
cnf(unI1,axiom,
( ~ member(C,A)
| member(C,un(A,B)) ) ).
%----UnI2
cnf(unI2,axiom,
( ~ member(C,B)
| member(C,un(A,B)) ) ).
%----emptyE
cnf(clause158,axiom,
~ member(X,eptset) ).
%----converseI
cnf(clause10,axiom,
( ~ member(pair(U,V),W)
| member(pair(V,U),converse(W)) ) ).
%----converseD
cnf(converseD,axiom,
( ~ member(pair(A,B),converse(R))
| member(pair(B,A),R) ) ).
%----two clauses for converseE
cnf(converseE_1,axiom,
( ~ member(YX,converse(R))
| YX = pair(converseE_sk2(YX),converseE_sk1(YX)) ) ).
cnf(converseE_2,axiom,
( ~ member(YX,converse(R))
| member(pair(converse_sk1(YX),converse_sk2(YX)),R) ) ).
%----lemma Un_eq_Union: "A Un B = Union({A, B})"
%Set {A,B} is represented as cons(A,cons(B,0)).
cnf(un_eq_Union_2_c1,negated_conjecture,
member(sk2,union(cons(a,cons(b,eptset)))) ).
cnf(un_eq_Union_2_c2,negated_conjecture,
~ member(sk2,un(a,b)) ).
%--------------------------------------------------------------------------