TPTP Problem File: SET769+4.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET769+4 : TPTP v9.0.0. Released v2.2.0.
% Domain : Set Theory (Equivalence relations)
% Problem : Equality of equivalence classes 2
% Version : [Pas99] axioms.
% English : Two equivalence classes are equal if and only if they are not
% : disjoint.
% Refs : [Pas99] Pastre (1999), Email to G. Sutcliffe
% Source : [Pas99]
% Names :
% Status : Theorem
% Rating : 0.79 v9.0.0, 0.78 v8.2.0, 0.81 v8.1.0, 0.78 v7.5.0, 0.84 v7.4.0, 0.77 v7.3.0, 0.76 v7.1.0, 0.65 v7.0.0, 0.70 v6.4.0, 0.69 v6.3.0, 0.75 v6.2.0, 0.68 v6.1.0, 0.73 v6.0.0, 0.87 v5.5.0, 0.89 v5.4.0, 0.93 v5.2.0, 0.95 v5.0.0, 0.92 v4.1.0, 0.96 v3.7.0, 0.90 v3.5.0, 0.89 v3.3.0, 0.86 v3.2.0, 0.91 v3.1.0, 0.89 v2.7.0, 0.83 v2.6.0, 0.86 v2.5.0, 0.88 v2.4.0, 0.75 v2.3.0, 0.67 v2.2.1
% Syntax : Number of formulae : 17 ( 1 unt; 0 def)
% Number of atoms : 73 ( 4 equ)
% Maximal formula atoms : 13 ( 4 avg)
% Number of connectives : 60 ( 4 ~; 2 |; 23 &)
% ( 16 <=>; 15 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 7 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 9 ( 8 usr; 0 prp; 2-3 aty)
% Number of functors : 10 ( 10 usr; 1 con; 0-3 aty)
% Number of variables : 61 ( 57 !; 4 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%----Include set theory definitions
include('Axioms/SET006+0.ax').
%----Include equivalence relation axioms
include('Axioms/SET006+2.ax').
%--------------------------------------------------------------------------
fof(thIII05,conjecture,
! [E,R,A,B] :
( ( equivalence(R,E)
& member(A,E)
& member(B,E) )
=> ( equal_set(equivalence_class(A,E,R),equivalence_class(B,E,R))
<=> ~ disjoint(equivalence_class(A,E,R),equivalence_class(B,E,R)) ) ) ).
%--------------------------------------------------------------------------