TPTP Problem File: SET766+4.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET766+4 : TPTP v9.0.0. Released v2.2.0.
% Domain : Set Theory (Equivalence relations)
% Problem : A member belongs to its equivalence class
% Version : [Pas99] axioms.
% English :
% Refs : [Pas99] Pastre (1999), Email to G. Sutcliffe
% Source : [Pas99]
% Names :
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.08 v8.1.0, 0.06 v7.4.0, 0.10 v7.3.0, 0.07 v7.1.0, 0.13 v7.0.0, 0.10 v6.4.0, 0.15 v6.3.0, 0.17 v6.2.0, 0.12 v6.1.0, 0.10 v6.0.0, 0.13 v5.5.0, 0.07 v5.3.0, 0.15 v5.2.0, 0.10 v5.0.0, 0.12 v4.1.0, 0.13 v4.0.0, 0.17 v3.7.0, 0.20 v3.5.0, 0.16 v3.4.0, 0.11 v3.3.0, 0.00 v2.2.1
% Syntax : Number of formulae : 17 ( 1 unt; 0 def)
% Number of atoms : 71 ( 4 equ)
% Maximal formula atoms : 13 ( 4 avg)
% Number of connectives : 57 ( 3 ~; 2 |; 22 &)
% ( 15 <=>; 15 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 7 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 9 ( 8 usr; 0 prp; 2-3 aty)
% Number of functors : 10 ( 10 usr; 1 con; 0-3 aty)
% Number of variables : 60 ( 56 !; 4 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%----Include set theory definitions
include('Axioms/SET006+0.ax').
%----Include equivalence relation axioms
include('Axioms/SET006+2.ax').
%--------------------------------------------------------------------------
fof(thIII02,conjecture,
! [E,R,A] :
( ( equivalence(R,E)
& member(A,E) )
=> member(A,equivalence_class(A,E,R)) ) ).
%--------------------------------------------------------------------------