TPTP Problem File: SET711+4.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET711+4 : TPTP v9.0.0. Bugfixed v2.2.1.
% Domain : Set Theory (Mappings)
% Problem : The inverse of a mapping is unique
% Version : [Pas99] axioms.
% English :
% Refs : [Pas99] Pastre (1999), Email to G. Sutcliffe
% Source : [Pas99]
% Names :
% Status : Theorem
% Rating : 0.45 v9.0.0, 0.47 v8.2.0, 0.53 v8.1.0, 0.50 v7.4.0, 0.43 v7.3.0, 0.45 v7.1.0, 0.43 v7.0.0, 0.47 v6.4.0, 0.50 v6.3.0, 0.46 v6.2.0, 0.44 v6.1.0, 0.50 v6.0.0, 0.61 v5.5.0, 0.63 v5.4.0, 0.75 v5.3.0, 0.74 v5.2.0, 0.60 v5.1.0, 0.67 v4.1.0, 0.70 v4.0.0, 0.71 v3.7.0, 0.75 v3.5.0, 0.74 v3.4.0, 0.79 v3.3.0, 0.71 v3.2.0, 0.73 v3.1.0, 0.78 v2.7.0, 0.67 v2.6.0, 0.71 v2.5.0, 0.88 v2.4.0, 0.75 v2.3.0, 0.67 v2.2.1
% Syntax : Number of formulae : 29 ( 1 unt; 0 def)
% Number of atoms : 133 ( 6 equ)
% Maximal formula atoms : 11 ( 4 avg)
% Number of connectives : 106 ( 2 ~; 2 |; 53 &)
% ( 30 <=>; 19 =>; 0 <=; 0 <~>)
% Maximal formula depth : 19 ( 9 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 16 ( 15 usr; 0 prp; 2-6 aty)
% Number of functors : 15 ( 15 usr; 1 con; 0-5 aty)
% Number of variables : 138 ( 129 !; 9 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Once this theorem is proved, a functional notation may be used
% to handle the inverse of mappings
% Bugfixes : v2.2.1 - Bugfixes in SET006+1.ax.
%--------------------------------------------------------------------------
%----Include set theory definitions
include('Axioms/SET006+0.ax').
%----Include mappings axioms
include('Axioms/SET006+1.ax').
%--------------------------------------------------------------------------
fof(thII03a,conjecture,
! [F,G,H,A,B] :
( ( maps(F,A,B)
& one_to_one(F,A,B)
& inverse_predicate(G,F,A,B)
& inverse_predicate(H,F,A,B) )
=> equal_maps(G,H,B,A) ) ).
%--------------------------------------------------------------------------