TPTP Problem File: SET692+4.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET692+4 : TPTP v9.0.0. Released v2.2.0.
% Domain : Set Theory (Naive)
% Problem : A = A ^ B iff A (= B
% Version : [Pas99] axioms.
% English : A is a subset of B if and only if it is equal to the
% intersection of A and B.
% Refs : [Pas99] Pastre (1999), Email to G. Sutcliffe
% Source : [Pas99]
% Names :
% Status : Theorem
% Rating : 0.36 v8.1.0, 0.31 v7.4.0, 0.33 v7.3.0, 0.31 v7.2.0, 0.28 v7.1.0, 0.30 v7.0.0, 0.33 v6.4.0, 0.35 v6.3.0, 0.42 v6.2.0, 0.36 v6.1.0, 0.47 v6.0.0, 0.48 v5.4.0, 0.57 v5.3.0, 0.59 v5.2.0, 0.55 v5.1.0, 0.57 v5.0.0, 0.58 v4.1.0, 0.57 v4.0.0, 0.58 v3.7.0, 0.65 v3.5.0, 0.68 v3.3.0, 0.57 v3.2.0, 0.64 v3.1.0, 0.78 v2.7.0, 0.67 v2.6.0, 0.71 v2.5.0, 0.88 v2.4.0, 0.25 v2.3.0, 0.00 v2.2.1
% Syntax : Number of formulae : 12 ( 1 unt; 0 def)
% Number of atoms : 31 ( 3 equ)
% Maximal formula atoms : 3 ( 2 avg)
% Number of connectives : 21 ( 2 ~; 2 |; 4 &)
% ( 11 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 5 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 4 ( 3 usr; 0 prp; 2-2 aty)
% Number of functors : 9 ( 9 usr; 1 con; 0-2 aty)
% Number of variables : 30 ( 29 !; 1 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%----Include set theory definitions
include('Axioms/SET006+0.ax').
%--------------------------------------------------------------------------
%----Extended version of SET006
fof(thI19,conjecture,
! [A,B] :
( equal_set(A,intersection(A,B))
<=> subset(A,B) ) ).
%--------------------------------------------------------------------------