TPTP Problem File: SET689+4.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET689+4 : TPTP v9.0.0. Released v2.2.0.
% Domain : Set Theory (Naive)
% Problem : Property of subset
% Version : [Pas99] axioms.
% English : If A is a subset of B,B a subset of C and C a subset of A,
% then A is equal to C.
% Refs : [Pas99] Pastre (1999), Email to G. Sutcliffe
% Source : [Pas99]
% Names :
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.11 v8.2.0, 0.14 v8.1.0, 0.11 v7.5.0, 0.09 v7.4.0, 0.17 v7.3.0, 0.14 v7.2.0, 0.10 v7.1.0, 0.09 v7.0.0, 0.07 v6.4.0, 0.12 v6.2.0, 0.08 v6.1.0, 0.10 v6.0.0, 0.17 v5.5.0, 0.15 v5.4.0, 0.11 v5.3.0, 0.15 v5.2.0, 0.10 v5.0.0, 0.12 v4.1.0, 0.09 v4.0.0, 0.12 v3.7.0, 0.20 v3.5.0, 0.16 v3.4.0, 0.26 v3.3.0, 0.07 v3.2.0, 0.09 v3.1.0, 0.00 v2.5.0, 0.12 v2.4.0, 0.00 v2.2.1
% Syntax : Number of formulae : 12 ( 1 unt; 0 def)
% Number of atoms : 33 ( 3 equ)
% Maximal formula atoms : 4 ( 2 avg)
% Number of connectives : 23 ( 2 ~; 2 |; 6 &)
% ( 10 <=>; 3 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 6 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 4 ( 3 usr; 0 prp; 2-2 aty)
% Number of functors : 9 ( 9 usr; 1 con; 0-2 aty)
% Number of variables : 31 ( 30 !; 1 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%----Include set theory definitions
include('Axioms/SET006+0.ax').
%--------------------------------------------------------------------------
fof(thI05,conjecture,
! [A,B,C] :
( ( subset(A,B)
& subset(B,C)
& subset(C,A) )
=> equal_set(A,C) ) ).
%--------------------------------------------------------------------------