TPTP Problem File: SET684^3.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET684^3 : TPTP v9.0.0. Released v3.6.0.
% Domain : Set Theory
% Problem : <x,z> in P(DtoE) o R(EtoF) iff ?y in E:<x,y> in P & <y,z> in R
% Version : [BS+08] axioms.
% English : Let P be a relation from D to E, R a relation from E to F, x an
% element of D, and z in F. Then <x,z> is in P composed with R if
% and only if there exists an element y in E such that <x,y> is in
% P and <y,z> is in R.
% Refs : [BS+05] Benzmueller et al. (2005), Can a Higher-Order and a Fi
% : [BS+08] Benzmueller et al. (2008), Combined Reasoning by Autom
% : [Ben08] Benzmueller (2008), Email to Geoff Sutcliffe
% Source : [Ben08]
% Names :
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.20 v8.2.0, 0.31 v8.1.0, 0.00 v6.0.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v4.1.0, 0.00 v3.7.0
% Syntax : Number of formulae : 71 ( 36 unt; 35 typ; 35 def)
% Number of atoms : 87 ( 43 equ; 0 cnn)
% Maximal formula atoms : 1 ( 2 avg)
% Number of connectives : 134 ( 8 ~; 5 |; 19 &; 91 @)
% ( 2 <=>; 9 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 1 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 216 ( 216 >; 0 *; 0 +; 0 <<)
% Number of symbols : 38 ( 36 usr; 2 con; 0-4 aty)
% Number of variables : 112 ( 80 ^; 23 !; 9 ?; 112 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
%----Include basic set theory definitions
include('Axioms/SET008^0.ax').
%----Include definitions for relations
include('Axioms/SET008^2.ax').
%------------------------------------------------------------------------------
thf(thm,conjecture,
! [P: $i > $i > $o,R: $i > $i > $o,X: $i,Z: $i] :
( ( rel_composition @ P @ R @ X @ Z )
<=> ? [Y: $i] :
( ( P @ X @ Y )
& ( R @ Y @ Z ) ) ) ).
%------------------------------------------------------------------------------