TPTP Problem File: SET679+3.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET679+3 : TPTP v9.0.0. Released v2.2.0.
% Domain : Set Theory (Relations)
% Problem : The identity relation on D is not the empty set
% Version : [Wor90] axioms : Reduced > Incomplete.
% English :
% Refs : [ILF] The ILF Group (1998), The ILF System: A Tool for the Int
% : [Wor90] Woronowicz (1990), Relations Defined on Sets
% Source : [ILF]
% Names : RELSET_1 (46) [Wor90]
% Status : Theorem
% Rating : 0.27 v9.0.0, 0.31 v7.4.0, 0.23 v7.3.0, 0.28 v7.2.0, 0.24 v7.1.0, 0.17 v6.4.0, 0.15 v6.3.0, 0.29 v6.2.0, 0.32 v6.1.0, 0.33 v6.0.0, 0.35 v5.5.0, 0.33 v5.4.0, 0.29 v5.3.0, 0.33 v5.2.0, 0.30 v5.1.0, 0.29 v5.0.0, 0.33 v4.1.0, 0.26 v4.0.0, 0.25 v3.5.0, 0.26 v3.4.0, 0.16 v3.3.0, 0.21 v3.2.0, 0.27 v3.1.0, 0.22 v2.7.0, 0.17 v2.6.0, 0.14 v2.5.0, 0.12 v2.4.0, 0.25 v2.3.0, 0.33 v2.2.1
% Syntax : Number of formulae : 24 ( 4 unt; 0 def)
% Number of atoms : 82 ( 4 equ)
% Maximal formula atoms : 7 ( 3 avg)
% Number of connectives : 65 ( 7 ~; 0 |; 9 &)
% ( 11 <=>; 38 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 5 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 7 ( 6 usr; 0 prp; 1-2 aty)
% Number of functors : 9 ( 9 usr; 3 con; 0-2 aty)
% Number of variables : 42 ( 37 !; 5 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%---- line(relat_1 - th(70),1918880)
fof(p1,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> ( member(C,B)
<=> member(ordered_pair(C,C),identity_relation_of(B)) ) ) ) ).
%---- line(hidden - axiom559,1832636)
fof(p2,axiom,
! [B] :
( ilf_type(B,set_type)
=> ~ member(B,empty_set) ) ).
%---- declaration(line(hidden - axiom559,1832636)) Part 1
fof(p3a,axiom,
empty(empty_set) ).
%---- declaration(line(hidden - axiom559,1832636)) Part 2
fof(p3b,axiom,
type(empty_set,set_type) ).
%---- line(relat_1 - df(10),1918876)
fof(p4,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> ! [D] :
( ilf_type(D,set_type)
=> ( member(ordered_pair(C,D),identity_relation_of(B))
<=> ( member(C,B)
& C = D ) ) ) ) ) ).
%---- declaration(line(relat_1 - df(10),1918876))
fof(p5,axiom,
! [B] :
( ilf_type(B,set_type)
=> ilf_type(identity_relation_of(B),binary_relation_type) ) ).
%---- line(hidden - axiom560,1832615)
fof(p6,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> ( B = C
<=> ! [D] :
( ilf_type(D,set_type)
=> ( member(D,B)
<=> member(D,C) ) ) ) ) ) ).
%---- line(hidden - axiom561,1832619)
fof(p7,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> ( not_equal(B,C)
<=> B != C ) ) ) ).
%---- line(hidden - axiom562,1832628)
fof(p8,axiom,
! [B] :
( ilf_type(B,set_type)
=> ( empty(B)
<=> ! [C] :
( ilf_type(C,set_type)
=> ~ member(C,B) ) ) ) ).
%---- declaration(op(ordered_pair,2,function))
fof(p9,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> ilf_type(ordered_pair(B,C),set_type) ) ) ).
%---- line(relat_1 - axiom563,1917641)
fof(p10,axiom,
! [B] :
( ilf_type(B,set_type)
=> ( ilf_type(B,binary_relation_type)
<=> ( relation_like(B)
& ilf_type(B,set_type) ) ) ) ).
%---- type_nonempty(line(relat_1 - axiom563,1917641))
fof(p11,axiom,
? [B] : ilf_type(B,binary_relation_type) ).
%---- line(relat_1 - df(1),1917627)
fof(p12,axiom,
! [B] :
( ilf_type(B,set_type)
=> ( relation_like(B)
<=> ! [C] :
( ilf_type(C,set_type)
=> ( member(C,B)
=> ? [D] :
( ilf_type(D,set_type)
& ? [E] :
( ilf_type(E,set_type)
& C = ordered_pair(D,E) ) ) ) ) ) ) ).
%---- conditional_cluster(axiom566,relation_like)
fof(p13,axiom,
! [B] :
( ( empty(B)
& ilf_type(B,set_type) )
=> relation_like(B) ) ).
%---- conditional_cluster(axiom567,relation_like)
fof(p14,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> ! [D] :
( ilf_type(D,subset_type(cross_product(B,C)))
=> relation_like(D) ) ) ) ).
%---- declaration(op(cross_product,2,function))
fof(p15,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> ilf_type(cross_product(B,C),set_type) ) ) ).
%---- line(hidden - axiom568,1832648)
fof(p16,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> ( ilf_type(C,subset_type(B))
<=> ilf_type(C,member_type(power_set(B))) ) ) ) ).
%---- type_nonempty(line(hidden - axiom568,1832648))
fof(p17,axiom,
! [B] :
( ilf_type(B,set_type)
=> ? [C] : ilf_type(C,subset_type(B)) ) ).
%---- line(hidden - axiom569,1832644)
fof(p18,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> ( member(B,power_set(C))
<=> ! [D] :
( ilf_type(D,set_type)
=> ( member(D,B)
=> member(D,C) ) ) ) ) ) ).
%---- declaration(line(hidden - axiom569,1832644))
fof(p19,axiom,
! [B] :
( ilf_type(B,set_type)
=> ( ~ empty(power_set(B))
& ilf_type(power_set(B),set_type) ) ) ).
%---- line(hidden - axiom570,1832640)
fof(p20,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ( ~ empty(C)
& ilf_type(C,set_type) )
=> ( ilf_type(B,member_type(C))
<=> member(B,C) ) ) ) ).
%---- type_nonempty(line(hidden - axiom570,1832640))
fof(p21,axiom,
! [B] :
( ( ~ empty(B)
& ilf_type(B,set_type) )
=> ? [C] : ilf_type(C,member_type(B)) ) ).
%---- declaration(set)
fof(p22,axiom,
! [B] : ilf_type(B,set_type) ).
%---- line(relset_1 - th(46),1916859)
fof(prove_relset_1_46,conjecture,
! [B] :
( ( ~ empty(B)
& ilf_type(B,set_type) )
=> not_equal(identity_relation_of(B),empty_set) ) ).
%--------------------------------------------------------------------------