TPTP Problem File: SET676+3.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET676+3 : TPTP v9.0.0. Released v2.2.0.
% Domain : Set Theory (Relations)
% Problem : X x X is a binary relation on X
% Version : [Wor90] axioms : Reduced > Incomplete.
% English :
% Refs : [ILF] The ILF Group (1998), The ILF System: A Tool for the Int
% : [Wor90] Woronowicz (1990), Relations Defined on Sets
% Source : [ILF]
% Names : RELSET_1 (41) [Wor90]
% Status : Theorem
% Rating : 0.03 v8.2.0, 0.06 v8.1.0, 0.03 v7.1.0, 0.00 v6.4.0, 0.04 v6.2.0, 0.00 v6.1.0, 0.07 v6.0.0, 0.04 v5.5.0, 0.07 v5.4.0, 0.11 v5.3.0, 0.22 v5.2.0, 0.05 v5.0.0, 0.04 v4.1.0, 0.09 v4.0.0, 0.08 v3.7.0, 0.05 v3.4.0, 0.00 v3.3.0, 0.07 v3.2.0, 0.18 v3.1.0, 0.11 v2.7.0, 0.17 v2.6.0, 0.14 v2.5.0, 0.12 v2.4.0, 0.25 v2.3.0, 0.33 v2.2.1
% Syntax : Number of formulae : 20 ( 1 unt; 0 def)
% Number of atoms : 77 ( 2 equ)
% Maximal formula atoms : 9 ( 3 avg)
% Number of connectives : 61 ( 4 ~; 0 |; 11 &)
% ( 7 <=>; 39 =>; 0 <=; 0 <~>)
% Maximal formula depth : 14 ( 6 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 5 ( 4 usr; 0 prp; 1-2 aty)
% Number of functors : 8 ( 8 usr; 1 con; 0-2 aty)
% Number of variables : 46 ( 38 !; 8 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%---- line(relset_1 - th(5),1916109)
fof(p1,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> ilf_type(cross_product(B,C),relation_type(B,C)) ) ) ).
%---- line(zfmisc_1 - df(1),1903822)
fof(p2,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> ! [D] :
( ilf_type(D,set_type)
=> ( member(D,cross_product(B,C))
<=> ? [E] :
( ilf_type(E,set_type)
& ? [F] :
( ilf_type(F,set_type)
& member(E,B)
& member(F,C)
& D = ordered_pair(E,F) ) ) ) ) ) ) ).
%---- declaration(line(zfmisc_1 - df(1),1903822))
fof(p3,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> ilf_type(cross_product(B,C),set_type) ) ) ).
%---- line(relset_1 - axiom495,1916837)
fof(p4,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> ( ilf_type(C,identity_relation_of_type(B))
<=> ilf_type(C,relation_type(B,B)) ) ) ) ).
%---- type_nonempty(line(relset_1 - axiom495,1916837))
fof(p5,axiom,
! [B] :
( ilf_type(B,set_type)
=> ? [C] : ilf_type(C,identity_relation_of_type(B)) ) ).
%---- declaration(op(ordered_pair,2,function))
fof(p6,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> ilf_type(ordered_pair(B,C),set_type) ) ) ).
%---- line(relset_1 - df(1),1916080)
fof(p7,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> ( ! [D] :
( ilf_type(D,subset_type(cross_product(B,C)))
=> ilf_type(D,relation_type(B,C)) )
& ! [E] :
( ilf_type(E,relation_type(B,C))
=> ilf_type(E,subset_type(cross_product(B,C))) ) ) ) ) ).
%---- type_nonempty(line(relset_1 - df(1),1916080))
fof(p8,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> ? [D] : ilf_type(D,relation_type(C,B)) ) ) ).
%---- line(hidden - axiom497,1832648)
fof(p9,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> ( ilf_type(C,subset_type(B))
<=> ilf_type(C,member_type(power_set(B))) ) ) ) ).
%---- type_nonempty(line(hidden - axiom497,1832648))
fof(p10,axiom,
! [B] :
( ilf_type(B,set_type)
=> ? [C] : ilf_type(C,subset_type(B)) ) ).
%---- line(hidden - axiom498,1832644)
fof(p11,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> ( member(B,power_set(C))
<=> ! [D] :
( ilf_type(D,set_type)
=> ( member(D,B)
=> member(D,C) ) ) ) ) ) ).
%---- declaration(line(hidden - axiom498,1832644))
fof(p12,axiom,
! [B] :
( ilf_type(B,set_type)
=> ( ~ empty(power_set(B))
& ilf_type(power_set(B),set_type) ) ) ).
%---- line(hidden - axiom499,1832640)
fof(p13,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ( ~ empty(C)
& ilf_type(C,set_type) )
=> ( ilf_type(B,member_type(C))
<=> member(B,C) ) ) ) ).
%---- type_nonempty(line(hidden - axiom499,1832640))
fof(p14,axiom,
! [B] :
( ( ~ empty(B)
& ilf_type(B,set_type) )
=> ? [C] : ilf_type(C,member_type(B)) ) ).
%---- line(hidden - axiom500,1832628)
fof(p15,axiom,
! [B] :
( ilf_type(B,set_type)
=> ( empty(B)
<=> ! [C] :
( ilf_type(C,set_type)
=> ~ member(C,B) ) ) ) ).
%---- line(relat_1 - df(1),1917627)
fof(p16,axiom,
! [B] :
( ilf_type(B,set_type)
=> ( relation_like(B)
<=> ! [C] :
( ilf_type(C,set_type)
=> ( member(C,B)
=> ? [D] :
( ilf_type(D,set_type)
& ? [E] :
( ilf_type(E,set_type)
& C = ordered_pair(D,E) ) ) ) ) ) ) ).
%---- conditional_cluster(axiom502,relation_like)
fof(p17,axiom,
! [B] :
( ( empty(B)
& ilf_type(B,set_type) )
=> relation_like(B) ) ).
%---- conditional_cluster(axiom503,relation_like)
fof(p18,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> ! [D] :
( ilf_type(D,subset_type(cross_product(B,C)))
=> relation_like(D) ) ) ) ).
%---- declaration(set)
fof(p19,axiom,
! [B] : ilf_type(B,set_type) ).
%---- line(relset_1 - th(41),1916840)
fof(prove_relset_1_41,conjecture,
! [B] :
( ilf_type(B,set_type)
=> ilf_type(cross_product(B,B),identity_relation_of_type(B)) ) ).
%--------------------------------------------------------------------------