TPTP Problem File: SET657^3.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET657^3 : TPTP v9.0.0. Released v3.6.0.
% Domain : Set Theory
% Problem : The field of a relation R from X to Y is a subset of X union Y
% Version : [BS+08] axioms.
% English :
% Refs : [BS+05] Benzmueller et al. (2005), Can a Higher-Order and a Fi
% : [BS+08] Benzmueller et al. (2008), Combined Reasoning by Autom
% : [Ben08] Benzmueller (2008), Email to Geoff Sutcliffe
% Source : [Ben08]
% Names :
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.20 v8.2.0, 0.31 v8.1.0, 0.09 v7.5.0, 0.00 v6.0.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v4.1.0, 0.00 v3.7.0
% Syntax : Number of formulae : 71 ( 35 unt; 35 typ; 35 def)
% Number of atoms : 91 ( 43 equ; 0 cnn)
% Maximal formula atoms : 5 ( 2 avg)
% Number of connectives : 129 ( 8 ~; 5 |; 18 &; 88 @)
% ( 1 <=>; 9 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 1 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 214 ( 214 >; 0 *; 0 +; 0 <<)
% Number of symbols : 41 ( 38 usr; 5 con; 0-4 aty)
% Number of variables : 110 ( 82 ^; 20 !; 8 ?; 110 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
%----Include basic set theory definitions
include('Axioms/SET008^0.ax').
%----Include definitions for relations
include('Axioms/SET008^2.ax').
%------------------------------------------------------------------------------
thf(thm,conjecture,
! [R: $i > $i > $o] :
( subset @ ( rel_field @ R )
@ ( union
@ ^ [X: $i] : $true
@ ^ [X: $i] : $true ) ) ).
%------------------------------------------------------------------------------