TPTP Problem File: SET641+3.p

View Solutions - Solve Problem

%--------------------------------------------------------------------------
% File     : SET641+3 : TPTP v9.0.0. Released v2.2.0.
% Domain   : Set Theory (Relations)
% Problem  : If A is a subset of X x Y then A is a relation from X to Y
% Version  : [Wor90] axioms : Reduced > Incomplete.
% English  :

% Refs     : [ILF] The ILF Group (1998), The ILF System: A Tool for the Int
%          : [Wor90] Woronowicz (1990), Relations Defined on Sets
% Source   : [ILF]
% Names    : RELSET_1 (3) [Wor90]

% Status   : Theorem
% Rating   : 0.21 v9.0.0, 0.25 v8.2.0, 0.17 v7.5.0, 0.19 v7.4.0, 0.17 v7.2.0, 0.14 v7.1.0, 0.09 v7.0.0, 0.13 v6.4.0, 0.15 v6.3.0, 0.21 v6.2.0, 0.20 v6.1.0, 0.27 v6.0.0, 0.22 v5.5.0, 0.26 v5.4.0, 0.25 v5.3.0, 0.33 v5.2.0, 0.20 v5.1.0, 0.24 v5.0.0, 0.25 v4.1.0, 0.26 v4.0.0, 0.25 v3.5.0, 0.26 v3.3.0, 0.21 v3.2.0, 0.18 v3.1.0, 0.22 v2.7.0, 0.17 v2.6.0, 0.14 v2.5.0, 0.12 v2.4.0, 0.25 v2.3.0, 0.33 v2.2.1
% Syntax   : Number of formulae    :   19 (   1 unt;   0 def)
%            Number of atoms       :   79 (   2 equ)
%            Maximal formula atoms :    9 (   4 avg)
%            Number of connectives :   64 (   4   ~;   0   |;  11   &)
%                                         (   7 <=>;  42  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   14 (   7 avg)
%            Maximal term depth    :    3 (   1 avg)
%            Number of predicates  :    6 (   5 usr;   0 prp; 1-2 aty)
%            Number of functors    :    7 (   7 usr;   1 con; 0-2 aty)
%            Number of variables   :   46 (  39   !;   7   ?)
% SPC      : FOF_THM_RFO_SEQ

% Comments :
%--------------------------------------------------------------------------
%---- line(relset_1 - df(1),1916080)
fof(p1,axiom,
    ! [B] :
      ( ilf_type(B,set_type)
     => ! [C] :
          ( ilf_type(C,set_type)
         => ( ! [D] :
                ( ilf_type(D,subset_type(cross_product(B,C)))
               => ilf_type(D,relation_type(B,C)) )
            & ! [E] :
                ( ilf_type(E,relation_type(B,C))
               => ilf_type(E,subset_type(cross_product(B,C))) ) ) ) ) ).

%---- type_nonempty(line(relset_1 - df(1),1916080))
fof(p2,axiom,
    ! [B] :
      ( ilf_type(B,set_type)
     => ! [C] :
          ( ilf_type(C,set_type)
         => ? [D] : ilf_type(D,relation_type(C,B)) ) ) ).

%---- line(zfmisc_1 - df(1),1903822)
fof(p3,axiom,
    ! [B] :
      ( ilf_type(B,set_type)
     => ! [C] :
          ( ilf_type(C,set_type)
         => ! [D] :
              ( ilf_type(D,set_type)
             => ( member(D,cross_product(B,C))
              <=> ? [E] :
                    ( ilf_type(E,set_type)
                    & ? [F] :
                        ( ilf_type(F,set_type)
                        & member(E,B)
                        & member(F,C)
                        & D = ordered_pair(E,F) ) ) ) ) ) ) ).

%---- declaration(line(zfmisc_1 - df(1),1903822))
fof(p4,axiom,
    ! [B] :
      ( ilf_type(B,set_type)
     => ! [C] :
          ( ilf_type(C,set_type)
         => ilf_type(cross_product(B,C),set_type) ) ) ).

%---- line(tarski - df(3),1832749)
fof(p5,axiom,
    ! [B] :
      ( ilf_type(B,set_type)
     => ! [C] :
          ( ilf_type(C,set_type)
         => ( subset(B,C)
          <=> ! [D] :
                ( ilf_type(D,set_type)
               => ( member(D,B)
                 => member(D,C) ) ) ) ) ) ).

%---- declaration(op(ordered_pair,2,function))
fof(p6,axiom,
    ! [B] :
      ( ilf_type(B,set_type)
     => ! [C] :
          ( ilf_type(C,set_type)
         => ilf_type(ordered_pair(B,C),set_type) ) ) ).

%---- line(hidden - axiom9,1832648)
fof(p7,axiom,
    ! [B] :
      ( ilf_type(B,set_type)
     => ! [C] :
          ( ilf_type(C,set_type)
         => ( ilf_type(C,subset_type(B))
          <=> ilf_type(C,member_type(power_set(B))) ) ) ) ).

%---- type_nonempty(line(hidden - axiom9,1832648))
fof(p8,axiom,
    ! [B] :
      ( ilf_type(B,set_type)
     => ? [C] : ilf_type(C,subset_type(B)) ) ).

%---- property(reflexivity,op(subset,2,predicate))
fof(p9,axiom,
    ! [B] :
      ( ilf_type(B,set_type)
     => subset(B,B) ) ).

%---- line(hidden - axiom11,1832644)
fof(p10,axiom,
    ! [B] :
      ( ilf_type(B,set_type)
     => ! [C] :
          ( ilf_type(C,set_type)
         => ( member(B,power_set(C))
          <=> ! [D] :
                ( ilf_type(D,set_type)
               => ( member(D,B)
                 => member(D,C) ) ) ) ) ) ).

%---- declaration(line(hidden - axiom11,1832644))
fof(p11,axiom,
    ! [B] :
      ( ilf_type(B,set_type)
     => ( ~ empty(power_set(B))
        & ilf_type(power_set(B),set_type) ) ) ).

%---- line(hidden - axiom12,1832640)
fof(p12,axiom,
    ! [B] :
      ( ilf_type(B,set_type)
     => ! [C] :
          ( ( ~ empty(C)
            & ilf_type(C,set_type) )
         => ( ilf_type(B,member_type(C))
          <=> member(B,C) ) ) ) ).

%---- type_nonempty(line(hidden - axiom12,1832640))
fof(p13,axiom,
    ! [B] :
      ( ( ~ empty(B)
        & ilf_type(B,set_type) )
     => ? [C] : ilf_type(C,member_type(B)) ) ).

%---- line(hidden - axiom13,1832628)
fof(p14,axiom,
    ! [B] :
      ( ilf_type(B,set_type)
     => ( empty(B)
      <=> ! [C] :
            ( ilf_type(C,set_type)
           => ~ member(C,B) ) ) ) ).

%---- line(relat_1 - df(1),1917627)
fof(p15,axiom,
    ! [B] :
      ( ilf_type(B,set_type)
     => ( relation_like(B)
      <=> ! [C] :
            ( ilf_type(C,set_type)
           => ( member(C,B)
             => ? [D] :
                  ( ilf_type(D,set_type)
                  & ? [E] :
                      ( ilf_type(E,set_type)
                      & C = ordered_pair(D,E) ) ) ) ) ) ) ).

%---- conditional_cluster(axiom15,relation_like)
fof(p16,axiom,
    ! [B] :
      ( ( empty(B)
        & ilf_type(B,set_type) )
     => relation_like(B) ) ).

%---- conditional_cluster(axiom16,relation_like)
fof(p17,axiom,
    ! [B] :
      ( ilf_type(B,set_type)
     => ! [C] :
          ( ilf_type(C,set_type)
         => ! [D] :
              ( ilf_type(D,subset_type(cross_product(B,C)))
             => relation_like(D) ) ) ) ).

%---- declaration(set)
fof(p18,axiom,
    ! [B] : ilf_type(B,set_type) ).

%---- line(relset_1 - th(3),1916094)
fof(prove_relset_1_3,conjecture,
    ! [B] :
      ( ilf_type(B,set_type)
     => ! [C] :
          ( ilf_type(C,set_type)
         => ! [D] :
              ( ilf_type(D,set_type)
             => ( subset(B,cross_product(C,D))
               => ilf_type(B,relation_type(C,D)) ) ) ) ) ).

%--------------------------------------------------------------------------