TPTP Problem File: SET638+3.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET638+3 : TPTP v9.0.0. Released v2.2.0.
% Domain : Set Theory
% Problem : If X (= Y U Z and X ^ Z = the empty set , then X (= Y
% Version : [Try90] axioms : Reduced > Incomplete.
% English : If X is a subset of the union of Y and Z and the intersection
% of X and Z is the empty set, then X is a subset of Y.
% Refs : [ILF] The ILF Group (1998), The ILF System: A Tool for the Int
% : [Try90] Trybulec (1990), Tarski Grothendieck Set Theory
% : [TS89] Trybulec & Swieczkowska (1989), Boolean Properties of
% Source : [ILF]
% Names : BOOLE (120) [TS89]
% Status : Theorem
% Rating : 0.06 v9.0.0, 0.08 v7.5.0, 0.09 v7.4.0, 0.00 v7.0.0, 0.03 v6.4.0, 0.08 v6.2.0, 0.16 v6.1.0, 0.13 v5.5.0, 0.22 v5.4.0, 0.21 v5.3.0, 0.26 v5.2.0, 0.05 v5.0.0, 0.12 v4.1.0, 0.13 v4.0.1, 0.17 v3.7.0, 0.10 v3.5.0, 0.11 v3.3.0, 0.07 v3.2.0, 0.18 v3.1.0, 0.11 v2.7.0, 0.17 v2.6.0, 0.14 v2.5.0, 0.00 v2.3.0, 0.33 v2.2.1
% Syntax : Number of formulae : 15 ( 7 unt; 0 def)
% Number of atoms : 29 ( 8 equ)
% Maximal formula atoms : 3 ( 1 avg)
% Number of connectives : 16 ( 2 ~; 1 |; 3 &)
% ( 7 <=>; 3 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 4 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 4 ( 3 usr; 0 prp; 1-2 aty)
% Number of functors : 3 ( 3 usr; 1 con; 0-2 aty)
% Number of variables : 33 ( 33 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%---- line(boole - th(37),1833277)
fof(intersection_is_subset,axiom,
! [B,C] : subset(intersection(B,C),B) ).
%---- line(boole - th(42),1833351)
fof(subset_intersection,axiom,
! [B,C] :
( subset(B,C)
=> intersection(B,C) = B ) ).
%---- line(boole - th(60),1833665)
fof(union_empty_set,axiom,
! [B] : union(B,empty_set) = B ).
%---- line(boole - th(70),1833813)
fof(intersection_distributes_over_union,axiom,
! [B,C,D] : intersection(B,union(C,D)) = union(intersection(B,C),intersection(B,D)) ).
%---- line(boole - df(2),1833042)
fof(union_defn,axiom,
! [B,C,D] :
( member(D,union(B,C))
<=> ( member(D,B)
| member(D,C) ) ) ).
%---- line(hidden - axiom228,1832636)
fof(empty_set_defn,axiom,
! [B] : ~ member(B,empty_set) ).
%---- line(boole - df(3),1833060)
fof(intersection_defn,axiom,
! [B,C,D] :
( member(D,intersection(B,C))
<=> ( member(D,B)
& member(D,C) ) ) ).
%---- line(tarski - df(3),1832749)
fof(subset_defn,axiom,
! [B,C] :
( subset(B,C)
<=> ! [D] :
( member(D,B)
=> member(D,C) ) ) ).
%---- line(boole - df(8),1833103)
fof(equal_defn,axiom,
! [B,C] :
( B = C
<=> ( subset(B,C)
& subset(C,B) ) ) ).
%---- property(commutativity,op(union,2,function))
fof(commutativity_of_union,axiom,
! [B,C] : union(B,C) = union(C,B) ).
%---- property(commutativity,op(intersection,2,function))
fof(commutativity_of_intersection,axiom,
! [B,C] : intersection(B,C) = intersection(C,B) ).
%---- property(reflexivity,op(subset,2,predicate))
fof(reflexivity_of_subset,axiom,
! [B] : subset(B,B) ).
%---- line(hidden - axiom230,1832628)
fof(empty_defn,axiom,
! [B] :
( empty(B)
<=> ! [C] : ~ member(C,B) ) ).
%---- line(hidden - axiom231,1832615)
fof(equal_member_defn,axiom,
! [B,C] :
( B = C
<=> ! [D] :
( member(D,B)
<=> member(D,C) ) ) ).
%---- line(boole - th(120),1834506)
fof(prove_th120,conjecture,
! [B,C,D] :
( ( subset(B,union(C,D))
& intersection(B,D) = empty_set )
=> subset(B,C) ) ).
%--------------------------------------------------------------------------