TPTP Problem File: SET632+3.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET632+3 : TPTP v9.0.0. Released v2.2.0.
% Domain : Set Theory
% Problem : If X (= Y & X (= Z & Y disjoint from Z, then X = empty set
% Version : [Try90] axioms : Reduced > Incomplete.
% English : If X is a subset of Y and X is a subset of Z and Y is disjoint
% from Z, then X is the empty set.
% Refs : [ILF] The ILF Group (1998), The ILF System: A Tool for the Int
% : [Try90] Trybulec (1990), Tarski Grothendieck Set Theory
% : [TS89] Trybulec & Swieczkowska (1989), Boolean Properties of
% Source : [ILF]
% Names : BOOLE (114) [TS89]
% Status : Theorem
% Rating : 0.18 v9.0.0, 0.17 v8.1.0, 0.11 v7.5.0, 0.12 v7.4.0, 0.10 v7.2.0, 0.07 v7.1.0, 0.09 v7.0.0, 0.10 v6.4.0, 0.12 v6.1.0, 0.07 v6.0.0, 0.09 v5.5.0, 0.07 v5.3.0, 0.11 v5.2.0, 0.05 v5.0.0, 0.04 v3.7.0, 0.14 v3.5.0, 0.00 v3.4.0, 0.17 v3.3.0, 0.00 v3.2.0, 0.22 v3.1.0, 0.00 v2.5.0, 0.33 v2.4.0, 0.33 v2.2.1
% Syntax : Number of formulae : 9 ( 2 unt; 0 def)
% Number of atoms : 21 ( 2 equ)
% Maximal formula atoms : 4 ( 2 avg)
% Number of connectives : 15 ( 3 ~; 0 |; 4 &)
% ( 5 <=>; 3 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 5 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 6 ( 5 usr; 0 prp; 1-2 aty)
% Number of functors : 1 ( 1 usr; 1 con; 0-0 aty)
% Number of variables : 19 ( 18 !; 1 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%---- line(tarski - df(3),1832749)
fof(subset_defn,axiom,
! [B,C] :
( subset(B,C)
<=> ! [D] :
( member(D,B)
=> member(D,C) ) ) ).
%---- line(boole - df(5),1833080)
fof(intersect_defn,axiom,
! [B,C] :
( intersect(B,C)
<=> ? [D] :
( member(D,B)
& member(D,C) ) ) ).
%---- line(hidden - axiom206,1832636)
fof(empty_set_defn,axiom,
! [B] : ~ member(B,empty_set) ).
%---- line(boole - axiom207,1833083)
fof(disjoint_defn,axiom,
! [B,C] :
( disjoint(B,C)
<=> ~ intersect(B,C) ) ).
%---- line(boole - df(8),1833103)
fof(equal_defn,axiom,
! [B,C] :
( B = C
<=> ( subset(B,C)
& subset(C,B) ) ) ).
%---- property(symmetry,op(intersect,2,predicate))
fof(symmetry_of_intersect,axiom,
! [B,C] :
( intersect(B,C)
=> intersect(C,B) ) ).
%---- property(reflexivity,op(subset,2,predicate))
fof(reflexivity_of_subset,axiom,
! [B] : subset(B,B) ).
%---- line(hidden - axiom209,1832628)
fof(empty_defn,axiom,
! [B] :
( empty(B)
<=> ! [C] : ~ member(C,B) ) ).
%---- line(boole - th(114),1834398)
fof(prove_th114,conjecture,
! [B,C,D] :
( ( subset(B,C)
& subset(B,D)
& disjoint(C,D) )
=> B = empty_set ) ).
%--------------------------------------------------------------------------