TPTP Problem File: SET628+3.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET628+3 : TPTP v9.0.0. Released v2.2.0.
% Domain : Set Theory
% Problem : X intersects X iff X is not the empty set
% Version : [Try90] axioms : Reduced > Incomplete.
% English :
% Refs : [ILF] The ILF Group (1998), The ILF System: A Tool for the Int
% : [Try90] Trybulec (1990), Tarski Grothendieck Set Theory
% : [TS89] Trybulec & Swieczkowska (1989), Boolean Properties of
% Source : [ILF]
% Names : BOOLE (110) [TS89]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.19 v8.2.0, 0.17 v8.1.0, 0.08 v7.5.0, 0.09 v7.4.0, 0.10 v7.2.0, 0.07 v7.1.0, 0.04 v7.0.0, 0.03 v6.4.0, 0.08 v6.1.0, 0.10 v6.0.0, 0.13 v5.5.0, 0.11 v5.3.0, 0.19 v5.2.0, 0.05 v5.0.0, 0.08 v4.1.0, 0.09 v4.0.1, 0.13 v4.0.0, 0.12 v3.7.0, 0.14 v3.5.0, 0.00 v3.4.0, 0.08 v3.3.0, 0.11 v3.2.0, 0.33 v3.1.0, 0.17 v2.7.0, 0.00 v2.5.0, 0.33 v2.4.0, 0.33 v2.2.1
% Syntax : Number of formulae : 7 ( 1 unt; 0 def)
% Number of atoms : 15 ( 2 equ)
% Maximal formula atoms : 3 ( 2 avg)
% Number of connectives : 11 ( 3 ~; 0 |; 1 &)
% ( 6 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 5 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 5 ( 4 usr; 0 prp; 1-2 aty)
% Number of functors : 1 ( 1 usr; 1 con; 0-0 aty)
% Number of variables : 14 ( 13 !; 1 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%---- line(boole - df(5),1833080)
fof(intersect_defn,axiom,
! [B,C] :
( intersect(B,C)
<=> ? [D] :
( member(D,B)
& member(D,C) ) ) ).
%---- line(hidden - axiom194,1832636)
fof(empty_set_defn,axiom,
! [B] : ~ member(B,empty_set) ).
%---- line(hidden - axiom195,1832615)
fof(equal_member_defn,axiom,
! [B,C] :
( B = C
<=> ! [D] :
( member(D,B)
<=> member(D,C) ) ) ).
%---- line(hidden - axiom196,1832619)
fof(not_equal_defn,axiom,
! [B,C] :
( not_equal(B,C)
<=> B != C ) ).
%---- property(symmetry,op(intersect,2,predicate))
fof(symmetry_of_intersect,axiom,
! [B,C] :
( intersect(B,C)
=> intersect(C,B) ) ).
%---- line(hidden - axiom198,1832628)
fof(empty_defn,axiom,
! [B] :
( empty(B)
<=> ! [C] : ~ member(C,B) ) ).
%---- line(boole - th(110),1834348)
fof(prove_th110,conjecture,
! [B] :
( intersect(B,B)
<=> not_equal(B,empty_set) ) ).
%--------------------------------------------------------------------------