TPTP Problem File: SET627+3.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET627+3 : TPTP v9.0.0. Released v2.2.0.
% Domain : Set Theory
% Problem : X is disjoint from the empty set
% Version : [Try90] axioms : Reduced > Incomplete.
% English :
% Refs : [ILF] The ILF Group (1998), The ILF System: A Tool for the Int
% : [Try90] Trybulec (1990), Tarski Grothendieck Set Theory
% : [TS89] Trybulec & Swieczkowska (1989), Boolean Properties of
% Source : [ILF]
% Names : BOOLE (104) [TS89]
% Status : Theorem
% Rating : 0.00 v6.3.0, 0.08 v6.2.0, 0.00 v5.3.0, 0.09 v5.2.0, 0.00 v3.2.0, 0.11 v3.1.0, 0.00 v2.2.1
% Syntax : Number of formulae : 6 ( 2 unt; 0 def)
% Number of atoms : 11 ( 0 equ)
% Maximal formula atoms : 3 ( 1 avg)
% Number of connectives : 8 ( 3 ~; 0 |; 1 &)
% ( 3 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 4 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 4 ( 4 usr; 0 prp; 1-2 aty)
% Number of functors : 1 ( 1 usr; 1 con; 0-0 aty)
% Number of variables : 11 ( 10 !; 1 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments :
%--------------------------------------------------------------------------
%---- line(hidden - axiom190,1832636)
fof(empty_set_defn,axiom,
! [B] : ~ member(B,empty_set) ).
%---- line(boole - df(5),1833080)
fof(intersect_defn,axiom,
! [B,C] :
( intersect(B,C)
<=> ? [D] :
( member(D,B)
& member(D,C) ) ) ).
%---- line(boole - axiom191,1833083)
fof(disjoint_defn,axiom,
! [B,C] :
( disjoint(B,C)
<=> ~ intersect(B,C) ) ).
%---- property(symmetry,op(intersect,2,predicate))
fof(symmetry_of_intersect,axiom,
! [B,C] :
( intersect(B,C)
=> intersect(C,B) ) ).
%---- line(hidden - axiom193,1832628)
fof(empty_defn,axiom,
! [B] :
( empty(B)
<=> ! [C] : ~ member(C,B) ) ).
%---- line(boole - th(104),1834334)
fof(prove_th104,conjecture,
! [B] : disjoint(B,empty_set) ).
%--------------------------------------------------------------------------