TPTP Problem File: SET625+3.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET625+3 : TPTP v9.0.0. Released v2.2.0.
% Domain : Set Theory
% Problem : If X intersects Y and Y is a subset of Z, then X intersects Z
% Version : [Try90] axioms : Reduced > Incomplete.
% English :
% Refs : [ILF] The ILF Group (1998), The ILF System: A Tool for the Int
% : [Try90] Trybulec (1990), Tarski Grothendieck Set Theory
% : [TS89] Trybulec & Swieczkowska (1989), Boolean Properties of
% Source : [ILF]
% Names : BOOLE (101) [TS89]
% Status : Theorem
% Rating : 0.07 v9.0.0, 0.00 v8.2.0, 0.07 v8.1.0, 0.00 v6.3.0, 0.08 v6.2.0, 0.00 v6.1.0, 0.04 v6.0.0, 0.25 v5.5.0, 0.04 v5.3.0, 0.13 v5.2.0, 0.00 v3.2.0, 0.11 v3.1.0, 0.00 v2.2.1
% Syntax : Number of formulae : 5 ( 1 unt; 0 def)
% Number of atoms : 12 ( 0 equ)
% Maximal formula atoms : 3 ( 2 avg)
% Number of connectives : 7 ( 0 ~; 0 |; 2 &)
% ( 2 <=>; 3 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 5 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 3 ( 3 usr; 0 prp; 2-2 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 12 ( 11 !; 1 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments :
%--------------------------------------------------------------------------
%---- line(boole - df(5),1833080)
fof(intersect_defn,axiom,
! [B,C] :
( intersect(B,C)
<=> ? [D] :
( member(D,B)
& member(D,C) ) ) ).
%---- line(tarski - df(3),1832749)
fof(subset_defn,axiom,
! [B,C] :
( subset(B,C)
<=> ! [D] :
( member(D,B)
=> member(D,C) ) ) ).
%---- property(symmetry,op(intersect,2,predicate))
fof(symmetry_of_intersect,axiom,
! [B,C] :
( intersect(B,C)
=> intersect(C,B) ) ).
%---- property(reflexivity,op(subset,2,predicate))
fof(reflexivity_of_subset,axiom,
! [B] : subset(B,B) ).
%---- line(boole - th(101),1834313)
fof(prove_th101,conjecture,
! [B,C,D] :
( ( intersect(B,C)
& subset(C,D) )
=> intersect(B,D) ) ).
%--------------------------------------------------------------------------