TPTP Problem File: SET622+3.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET622+3 : TPTP v9.0.0. Released v2.2.0.
% Domain : Set Theory
% Problem : X \ (Y sym\ Z) = (X \ (Y U Z)) U X ^ Y ^ Z
% Version : [Try90] axioms : Reduced > Incomplete.
% English : The difference of X and (the symmetric difference of Y and Z)
% is the union of (the difference of X and (the union of Y and Z))
% and the intersection of X and the intersection of Y and Z.
% Refs : [ILF] The ILF Group (1998), The ILF System: A Tool for the Int
% : [Try90] Trybulec (1990), Tarski Grothendieck Set Theory
% : [TS89] Trybulec & Swieczkowska (1989), Boolean Properties of
% Source : [ILF]
% Names : BOOLE (98) [TS89]
% Status : Theorem
% Rating : 0.09 v9.0.0, 0.11 v7.5.0, 0.12 v7.4.0, 0.03 v7.1.0, 0.04 v7.0.0, 0.07 v6.4.0, 0.08 v6.3.0, 0.00 v6.2.0, 0.08 v6.1.0, 0.20 v6.0.0, 0.22 v5.5.0, 0.19 v5.4.0, 0.21 v5.3.0, 0.33 v5.2.0, 0.05 v5.0.0, 0.17 v4.1.0, 0.22 v4.0.0, 0.21 v3.7.0, 0.15 v3.5.0, 0.11 v3.4.0, 0.16 v3.3.0, 0.07 v3.2.0, 0.18 v3.1.0, 0.11 v2.7.0, 0.00 v2.2.1
% Syntax : Number of formulae : 15 ( 9 unt; 0 def)
% Number of atoms : 27 ( 10 equ)
% Maximal formula atoms : 3 ( 1 avg)
% Number of connectives : 13 ( 1 ~; 1 |; 3 &)
% ( 7 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 4 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-2 aty)
% Number of functors : 4 ( 4 usr; 0 con; 2-2 aty)
% Number of variables : 37 ( 37 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%---- line(boole - th(67),1833740)
fof(associativity_of_intersection,axiom,
! [B,C,D] : intersection(intersection(B,C),D) = intersection(B,intersection(C,D)) ).
%---- line(boole - th(81),1833972)
fof(difference_difference_union2,axiom,
! [B,C,D] : difference(B,difference(C,D)) = union(difference(B,C),intersection(B,D)) ).
%---- line(boole - th(96),1834227)
fof(symmetric_difference_and_difference,axiom,
! [B,C] : symmetric_difference(B,C) = difference(union(B,C),intersection(B,C)) ).
%---- line(boole - df(2),1833042)
fof(union_defn,axiom,
! [B,C,D] :
( member(D,union(B,C))
<=> ( member(D,B)
| member(D,C) ) ) ).
%---- line(boole - df(3),1833060)
fof(intersection_defn,axiom,
! [B,C,D] :
( member(D,intersection(B,C))
<=> ( member(D,B)
& member(D,C) ) ) ).
%---- line(boole - df(4),1833078)
fof(difference_defn,axiom,
! [B,C,D] :
( member(D,difference(B,C))
<=> ( member(D,B)
& ~ member(D,C) ) ) ).
%---- line(boole - df(7),1833089)
fof(symmetric_difference_defn,axiom,
! [B,C] : symmetric_difference(B,C) = union(difference(B,C),difference(C,B)) ).
%---- line(boole - df(8),1833103)
fof(equal_defn,axiom,
! [B,C] :
( B = C
<=> ( subset(B,C)
& subset(C,B) ) ) ).
%---- property(commutativity,op(union,2,function))
fof(commutativity_of_union,axiom,
! [B,C] : union(B,C) = union(C,B) ).
%---- property(commutativity,op(intersection,2,function))
fof(commutativity_of_intersection,axiom,
! [B,C] : intersection(B,C) = intersection(C,B) ).
%---- property(commutativity,op(symmetric_difference,2,function))
fof(commutativity_of_symmetric_difference,axiom,
! [B,C] : symmetric_difference(B,C) = symmetric_difference(C,B) ).
%---- line(hidden - axiom181,1832615)
fof(equal_member_defn,axiom,
! [B,C] :
( B = C
<=> ! [D] :
( member(D,B)
<=> member(D,C) ) ) ).
%---- line(tarski - df(3),1832749)
fof(subset_defn,axiom,
! [B,C] :
( subset(B,C)
<=> ! [D] :
( member(D,B)
=> member(D,C) ) ) ).
%---- property(reflexivity,op(subset,2,predicate))
fof(reflexivity_of_subset,axiom,
! [B] : subset(B,B) ).
%---- line(boole - th(98),1834245)
fof(prove_th98,conjecture,
! [B,C,D] : difference(B,symmetric_difference(C,D)) = union(difference(B,union(C,D)),intersection(intersection(B,C),D)) ).
%--------------------------------------------------------------------------