TPTP Problem File: SET619+3.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET619+3 : TPTP v9.0.0. Released v2.2.0.
% Domain : Set Theory
% Problem : X U Y = (X sym\ Y) U X ^ Y
% Version : [Try90] axioms : Reduced > Incomplete.
% English : The union of X and Y is the union of (the symmetric difference
% of X and Y) and the intersection of X and Y.
% Refs : [ILF] The ILF Group (1998), The ILF System: A Tool for the Int
% : [Try90] Trybulec (1990), Tarski Grothendieck Set Theory
% : [TS89] Trybulec & Swieczkowska (1989), Boolean Properties of
% Source : [ILF]
% Names : BOOLE (95) [TS89]
% Status : Theorem
% Rating : 0.21 v9.0.0, 0.31 v8.2.0, 0.28 v8.1.0, 0.22 v7.5.0, 0.34 v7.4.0, 0.13 v7.3.0, 0.24 v7.2.0, 0.28 v7.1.0, 0.17 v7.0.0, 0.20 v6.4.0, 0.27 v6.3.0, 0.21 v6.2.0, 0.24 v6.1.0, 0.30 v5.5.0, 0.37 v5.4.0, 0.43 v5.3.0, 0.52 v5.2.0, 0.40 v5.1.0, 0.38 v5.0.0, 0.46 v4.1.0, 0.43 v4.0.0, 0.46 v3.7.0, 0.40 v3.5.0, 0.37 v3.4.0, 0.32 v3.3.0, 0.29 v3.2.0, 0.27 v3.1.0, 0.22 v2.7.0, 0.17 v2.6.0, 0.14 v2.5.0, 0.12 v2.4.0, 0.25 v2.3.0, 0.33 v2.2.1
% Syntax : Number of formulae : 14 ( 9 unt; 0 def)
% Number of atoms : 24 ( 10 equ)
% Maximal formula atoms : 3 ( 1 avg)
% Number of connectives : 10 ( 0 ~; 1 |; 2 &)
% ( 6 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 4 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-2 aty)
% Number of functors : 4 ( 4 usr; 0 con; 2-2 aty)
% Number of variables : 32 ( 32 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%---- line(boole - df(7),1833089)
fof(symmetric_difference_defn,axiom,
! [B,C] : symmetric_difference(B,C) = union(difference(B,C),difference(C,B)) ).
%---- line(boole - th(64),1833712)
fof(associativity_of_union,axiom,
! [B,C,D] : union(union(B,C),D) = union(B,union(C,D)) ).
%---- line(boole - th(69),1833784)
fof(union_intersection,axiom,
! [B,C] : union(B,intersection(B,C)) = B ).
%---- line(boole - th(80),1833943)
fof(union_intersection_difference,axiom,
! [B,C] : union(intersection(B,C),difference(B,C)) = B ).
%---- line(boole - df(2),1833042)
fof(union_defn,axiom,
! [B,C,D] :
( member(D,union(B,C))
<=> ( member(D,B)
| member(D,C) ) ) ).
%---- line(boole - df(3),1833060)
fof(intersection_defn,axiom,
! [B,C,D] :
( member(D,intersection(B,C))
<=> ( member(D,B)
& member(D,C) ) ) ).
%---- line(boole - df(8),1833103)
fof(equal_defn,axiom,
! [B,C] :
( B = C
<=> ( subset(B,C)
& subset(C,B) ) ) ).
%---- property(commutativity,op(union,2,function))
fof(commutativity_of_union,axiom,
! [B,C] : union(B,C) = union(C,B) ).
%---- property(commutativity,op(intersection,2,function))
fof(commutativity_of_intersection,axiom,
! [B,C] : intersection(B,C) = intersection(C,B) ).
%---- property(commutativity,op(symmetric_difference,2,function))
fof(commutativity_of_symmetric_difference,axiom,
! [B,C] : symmetric_difference(B,C) = symmetric_difference(C,B) ).
%---- line(hidden - axiom175,1832615)
fof(equal_member_defn,axiom,
! [B,C] :
( B = C
<=> ! [D] :
( member(D,B)
<=> member(D,C) ) ) ).
%---- line(tarski - df(3),1832749)
fof(subset_defn,axiom,
! [B,C] :
( subset(B,C)
<=> ! [D] :
( member(D,B)
=> member(D,C) ) ) ).
%---- property(reflexivity,op(subset,2,predicate))
fof(reflexivity_of_subset,axiom,
! [B] : subset(B,B) ).
%---- line(boole - th(95),1834220)
fof(prove_th95,conjecture,
! [B,C] : union(B,C) = union(symmetric_difference(B,C),intersection(B,C)) ).
%--------------------------------------------------------------------------