TPTP Problem File: SET618+3.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET618+3 : TPTP v9.0.0. Released v2.2.0.
% Domain : Set Theory
% Problem : The symmetric difference of X and X is the empty set
% Version : [Try90] axioms : Reduced > Incomplete.
% English :
% Refs : [ILF] The ILF Group (1998), The ILF System: A Tool for the Int
% : [Try90] Trybulec (1990), Tarski Grothendieck Set Theory
% : [TS89] Trybulec & Swieczkowska (1989), Boolean Properties of
% Source : [ILF]
% Names : BOOLE (93) [TS89]
% Status : Theorem
% Rating : 0.00 v9.0.0, 0.06 v8.1.0, 0.03 v7.1.0, 0.00 v7.0.0, 0.03 v6.4.0, 0.08 v6.1.0, 0.10 v6.0.0, 0.13 v5.5.0, 0.07 v5.4.0, 0.11 v5.3.0, 0.15 v5.2.0, 0.00 v5.0.0, 0.04 v4.0.1, 0.09 v4.0.0, 0.08 v3.7.0, 0.05 v3.3.0, 0.07 v3.2.0, 0.18 v3.1.0, 0.11 v2.7.0, 0.00 v2.5.0, 0.12 v2.4.0, 0.25 v2.3.0, 0.33 v2.2.1
% Syntax : Number of formulae : 12 ( 8 unt; 0 def)
% Number of atoms : 19 ( 8 equ)
% Maximal formula atoms : 3 ( 1 avg)
% Number of connectives : 9 ( 2 ~; 0 |; 1 &)
% ( 5 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 4 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 4 ( 3 usr; 0 prp; 1-2 aty)
% Number of functors : 4 ( 4 usr; 1 con; 0-2 aty)
% Number of variables : 21 ( 21 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%---- line(boole - df(7),1833089)
fof(symmetric_difference_defn,axiom,
! [B,C] : symmetric_difference(B,C) = union(difference(B,C),difference(C,B)) ).
%---- line(boole - th(62),1833685)
fof(idempotency_of_union,axiom,
! [B] : union(B,B) = B ).
%---- line(boole - th(73),1833852)
fof(self_difference_is_empty_set,axiom,
! [B] : difference(B,B) = empty_set ).
%---- line(hidden - axiom171,1832636)
fof(empty_set_defn,axiom,
! [B] : ~ member(B,empty_set) ).
%---- line(boole - df(8),1833103)
fof(equal_defn,axiom,
! [B,C] :
( B = C
<=> ( subset(B,C)
& subset(C,B) ) ) ).
%---- property(commutativity,op(union,2,function))
fof(commutativity_of_union,axiom,
! [B,C] : union(B,C) = union(C,B) ).
%---- property(commutativity,op(symmetric_difference,2,function))
fof(commutativity_of_symmetric_difference,axiom,
! [B,C] : symmetric_difference(B,C) = symmetric_difference(C,B) ).
%---- line(hidden - axiom172,1832615)
fof(equal_member_defn,axiom,
! [B,C] :
( B = C
<=> ! [D] :
( member(D,B)
<=> member(D,C) ) ) ).
%---- line(tarski - df(3),1832749)
fof(subset_defn,axiom,
! [B,C] :
( subset(B,C)
<=> ! [D] :
( member(D,B)
=> member(D,C) ) ) ).
%---- property(reflexivity,op(subset,2,predicate))
fof(reflexivity_of_subset,axiom,
! [B] : subset(B,B) ).
%---- line(hidden - axiom174,1832628)
fof(empty_defn,axiom,
! [B] :
( empty(B)
<=> ! [C] : ~ member(C,B) ) ).
%---- line(boole - th(93),1834213)
fof(prove_th93,conjecture,
! [B] : symmetric_difference(B,B) = empty_set ).
%--------------------------------------------------------------------------