TPTP Problem File: SET617+3.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET617+3 : TPTP v9.0.0. Released v2.2.0.
% Domain : Set Theory
% Problem : X sym\ the empty set = X and the empty set sym\ X = X
% Version : [Try90] axioms : Reduced > Incomplete.
% English : The symmetric difference of X and the empty set is X and the
% symmetric difference of the empty set and X is X.
% Refs : [ILF] The ILF Group (1998), The ILF System: A Tool for the Int
% : [Try90] Trybulec (1990), Tarski Grothendieck Set Theory
% : [TS89] Trybulec & Swieczkowska (1989), Boolean Properties of
% Source : [ILF]
% Names : BOOLE (92) [TS89]
% Status : Theorem
% Rating : 0.09 v9.0.0, 0.11 v8.2.0, 0.14 v7.5.0, 0.16 v7.4.0, 0.07 v7.1.0, 0.09 v7.0.0, 0.07 v6.4.0, 0.12 v6.3.0, 0.08 v6.2.0, 0.16 v6.1.0, 0.23 v6.0.0, 0.22 v5.5.0, 0.15 v5.4.0, 0.14 v5.3.0, 0.19 v5.2.0, 0.05 v5.0.0, 0.12 v4.1.0, 0.13 v4.0.1, 0.17 v3.7.0, 0.05 v3.4.0, 0.11 v3.3.0, 0.14 v3.2.0, 0.27 v3.1.0, 0.22 v2.7.0, 0.17 v2.6.0, 0.14 v2.5.0, 0.12 v2.4.0, 0.25 v2.3.0, 0.33 v2.2.1
% Syntax : Number of formulae : 13 ( 8 unt; 0 def)
% Number of atoms : 21 ( 10 equ)
% Maximal formula atoms : 3 ( 1 avg)
% Number of connectives : 10 ( 2 ~; 0 |; 2 &)
% ( 5 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 3 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 4 ( 3 usr; 0 prp; 1-2 aty)
% Number of functors : 4 ( 4 usr; 1 con; 0-2 aty)
% Number of variables : 22 ( 22 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%---- line(boole - df(7),1833089)
fof(symmetric_difference_defn,axiom,
! [B,C] : symmetric_difference(B,C) = union(difference(B,C),difference(C,B)) ).
%---- line(boole - th(60),1833665)
fof(union_empty_set,axiom,
! [B] : union(B,empty_set) = B ).
%---- line(boole - th(74),1833858)
fof(no_difference_with_empty_set1,axiom,
! [B] : difference(B,empty_set) = B ).
%---- line(boole - th(75),1833864)
fof(no_difference_with_empty_set2,axiom,
! [B] : difference(empty_set,B) = empty_set ).
%---- line(hidden - axiom167,1832636)
fof(empty_set_defn,axiom,
! [B] : ~ member(B,empty_set) ).
%---- line(boole - df(8),1833103)
fof(equal_defn,axiom,
! [B,C] :
( B = C
<=> ( subset(B,C)
& subset(C,B) ) ) ).
%---- property(commutativity,op(union,2,function))
fof(commutativity_of_union,axiom,
! [B,C] : union(B,C) = union(C,B) ).
%---- property(commutativity,op(symmetric_difference,2,function))
fof(commutativity_of_symmetric_difference,axiom,
! [B,C] : symmetric_difference(B,C) = symmetric_difference(C,B) ).
%---- line(hidden - axiom168,1832615)
fof(equal_member_defn,axiom,
! [B,C] :
( B = C
<=> ! [D] :
( member(D,B)
<=> member(D,C) ) ) ).
%---- line(tarski - df(3),1832749)
fof(subset_defn,axiom,
! [B,C] :
( subset(B,C)
<=> ! [D] :
( member(D,B)
=> member(D,C) ) ) ).
%---- property(reflexivity,op(subset,2,predicate))
fof(reflexivity_of_subset,axiom,
! [B] : subset(B,B) ).
%---- line(hidden - axiom170,1832628)
fof(empty_defn,axiom,
! [B] :
( empty(B)
<=> ! [C] : ~ member(C,B) ) ).
%---- line(boole - th(92),1834208)
fof(prove_th92,conjecture,
! [B] :
( symmetric_difference(B,empty_set) = B
& symmetric_difference(empty_set,B) = B ) ).
%--------------------------------------------------------------------------