TPTP Problem File: SET612+3.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET612+3 : TPTP v9.0.0. Released v2.2.0.
% Domain : Set Theory
% Problem : X \ (Y U Z) = (X \ Y) ^ (X \ Z)
% Version : [Try90] axioms : Reduced > Incomplete.
% English : The difference of X and (the union of Y and Z) is the
% intersection of (the difference of X and Y) and (the difference
% of X and Z).
% Refs : [ILF] The ILF Group (1998), The ILF System: A Tool for the Int
% : [Try90] Trybulec (1990), Tarski Grothendieck Set Theory
% : [TS89] Trybulec & Swieczkowska (1989), Boolean Properties of
% Source : [ILF]
% Names : BOOLE (85) [TS89]
% Status : Theorem
% Rating : 0.61 v9.0.0, 0.58 v8.2.0, 0.61 v7.5.0, 0.66 v7.4.0, 0.60 v7.3.0, 0.55 v7.2.0, 0.52 v7.0.0, 0.47 v6.4.0, 0.46 v6.3.0, 0.58 v6.2.0, 0.68 v6.1.0, 0.73 v6.0.0, 0.74 v5.5.0, 0.81 v5.4.0, 0.79 v5.3.0, 0.78 v5.2.0, 0.75 v5.1.0, 0.76 v5.0.0, 0.75 v4.1.0, 0.70 v4.0.1, 0.74 v4.0.0, 0.71 v3.7.0, 0.65 v3.5.0, 0.68 v3.4.0, 0.74 v3.3.0, 0.71 v3.2.0, 0.82 v3.1.0, 0.89 v2.7.0, 1.00 v2.6.0, 0.86 v2.5.0, 0.75 v2.4.0, 0.50 v2.3.0, 0.33 v2.2.1
% Syntax : Number of formulae : 13 ( 5 unt; 0 def)
% Number of atoms : 28 ( 5 equ)
% Maximal formula atoms : 3 ( 2 avg)
% Number of connectives : 16 ( 1 ~; 1 |; 4 &)
% ( 7 <=>; 3 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 5 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-2 aty)
% Number of functors : 3 ( 3 usr; 0 con; 2-2 aty)
% Number of variables : 33 ( 33 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%------------------------------------------------------------------------------
%---- line(boole - df(2),1833042)
fof(union_defn,axiom,
! [B,C,D] :
( member(D,union(B,C))
<=> ( member(D,B)
| member(D,C) ) ) ).
%---- line(boole - df(3),1833060)
fof(intersection_defn,axiom,
! [B,C,D] :
( member(D,intersection(B,C))
<=> ( member(D,B)
& member(D,C) ) ) ).
%---- line(boole - df(4),1833078)
fof(difference_defn,axiom,
! [B,C,D] :
( member(D,difference(B,C))
<=> ( member(D,B)
& ~ member(D,C) ) ) ).
%---- line(boole - th(31),1833190)
fof(subset_of_union,axiom,
! [B,C] : subset(B,union(B,C)) ).
%---- line(boole - th(39),1833302)
fof(intersection_of_subsets,axiom,
! [B,C,D] :
( ( subset(B,C)
& subset(B,D) )
=> subset(B,intersection(C,D)) ) ).
%---- line(boole - th(47),1833437)
fof(subset_difference,axiom,
! [B,C,D] :
( subset(B,C)
=> subset(difference(D,C),difference(D,B)) ) ).
%---- line(boole - df(8),1833103)
fof(equal_defn,axiom,
! [B,C] :
( B = C
<=> ( subset(B,C)
& subset(C,B) ) ) ).
%---- property(commutativity,op(union,2,function))
fof(commutativity_of_union,axiom,
! [B,C] : union(B,C) = union(C,B) ).
%---- property(commutativity,op(intersection,2,function))
fof(commutativity_of_intersection,axiom,
! [B,C] : intersection(B,C) = intersection(C,B) ).
%---- line(tarski - df(3),1832749)
fof(subset_defn,axiom,
! [B,C] :
( subset(B,C)
<=> ! [D] :
( member(D,B)
=> member(D,C) ) ) ).
%---- property(reflexivity,op(subset,2,predicate))
fof(reflexivity_of_subset,axiom,
! [B] : subset(B,B) ).
%---- line(hidden - axiom154,1832615)
fof(equal_member_defn,axiom,
! [B,C] :
( B = C
<=> ! [D] :
( member(D,B)
<=> member(D,C) ) ) ).
%---- line(boole - th(85),1834078)
fof(prove_th85,conjecture,
! [B,C,D] : difference(B,union(C,D)) = intersection(difference(B,C),difference(B,D)) ).
%------------------------------------------------------------------------------