TPTP Problem File: SET611+3.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET611+3 : TPTP v9.0.0. Released v2.2.0.
% Domain : Set Theory
% Problem : X ^ Y = the empty set iff X \ Y = X
% Version : [Try90] axioms : Reduced > Incomplete.
% English : The intersection of X and Y is the empty set iff the difference
% of X and Y is X.
% Refs : [ILF] The ILF Group (1998), The ILF System: A Tool for the Int
% : [Try90] Trybulec (1990), Tarski Grothendieck Set Theory
% : [TS89] Trybulec & Swieczkowska (1989), Boolean Properties of
% Source : [ILF]
% Names : BOOLE (84) [TS89]
% Status : Theorem
% Rating : 0.24 v9.0.0, 0.28 v8.2.0, 0.25 v7.5.0, 0.28 v7.4.0, 0.20 v7.3.0, 0.17 v7.2.0, 0.14 v7.1.0, 0.13 v6.4.0, 0.15 v6.3.0, 0.25 v6.2.0, 0.24 v6.1.0, 0.40 v6.0.0, 0.39 v5.5.0, 0.37 v5.4.0, 0.39 v5.3.0, 0.44 v5.2.0, 0.25 v5.1.0, 0.24 v5.0.0, 0.38 v4.1.0, 0.43 v4.0.1, 0.39 v4.0.0, 0.38 v3.7.0, 0.30 v3.5.0, 0.26 v3.4.0, 0.37 v3.3.0, 0.36 v3.2.0, 0.45 v3.1.0, 0.44 v2.7.0, 0.33 v2.6.0, 0.71 v2.5.0, 0.50 v2.4.0, 0.25 v2.3.0, 0.00 v2.2.1
% Syntax : Number of formulae : 11 ( 3 unt; 0 def)
% Number of atoms : 25 ( 6 equ)
% Maximal formula atoms : 3 ( 2 avg)
% Number of connectives : 17 ( 3 ~; 0 |; 3 &)
% ( 9 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 5 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 4 ( 3 usr; 0 prp; 1-2 aty)
% Number of functors : 3 ( 3 usr; 1 con; 0-2 aty)
% Number of variables : 25 ( 25 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%------------------------------------------------------------------------------
%---- line(tarski - th(2),1832736)
fof(member_equal,axiom,
! [B,C] :
( ! [D] :
( member(D,B)
<=> member(D,C) )
=> B = C ) ).
%---- line(boole - df(3),1833060)
fof(intersection_defn,axiom,
! [B,C,D] :
( member(D,intersection(B,C))
<=> ( member(D,B)
& member(D,C) ) ) ).
%---- line(boole - df(4),1833078)
fof(difference_defn,axiom,
! [B,C,D] :
( member(D,difference(B,C))
<=> ( member(D,B)
& ~ member(D,C) ) ) ).
%---- line(hidden - axiom149,1832636)
fof(empty_set_defn,axiom,
! [B] : ~ member(B,empty_set) ).
%---- line(boole - df(8),1833103)
fof(equal_defn,axiom,
! [B,C] :
( B = C
<=> ( subset(B,C)
& subset(C,B) ) ) ).
%---- property(commutativity,op(intersection,2,function))
fof(commutativity_of_intersection,axiom,
! [B,C] : intersection(B,C) = intersection(C,B) ).
%---- line(hidden - axiom150,1832615)
fof(equal_member_defn,axiom,
! [B,C] :
( B = C
<=> ! [D] :
( member(D,B)
<=> member(D,C) ) ) ).
%---- line(tarski - df(3),1832749)
fof(subset_defn,axiom,
! [B,C] :
( subset(B,C)
<=> ! [D] :
( member(D,B)
=> member(D,C) ) ) ).
%---- property(reflexivity,op(subset,2,predicate))
fof(reflexivity_of_subset,axiom,
! [B] : subset(B,B) ).
%---- line(hidden - axiom152,1832628)
fof(empty_defn,axiom,
! [B] :
( empty(B)
<=> ! [C] : ~ member(C,B) ) ).
%---- line(boole - th(84),1834054)
fof(prove_th84,conjecture,
! [B,C] :
( intersection(B,C) = empty_set
<=> difference(B,C) = B ) ).
%------------------------------------------------------------------------------