TPTP Problem File: SET598+3.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET598+3 : TPTP v9.0.0. Released v2.2.0.
% Domain : Set Theory
% Problem : X = Y ^ Z iff X (= Y, X (= Z, !V: V (= Y & V (= Z, V (= X
% Version : [Try90] axioms : Reduced > Incomplete.
% English : X is the intersection of Y and Z if and only if the following
% conditions are satisfied: 1. X is a subset of Y, 2. X is a
% subset of Z, and 3. for every V such that V is a subset of Y
% and V is a subset of Z : V is a subset of X.
% Refs : [ILF] The ILF Group (1998), The ILF System: A Tool for the Int
% : [Try90] Trybulec (1990), Tarski Grothendieck Set Theory
% : [TS89] Trybulec & Swieczkowska (1989), Boolean Properties of
% Source : [ILF]
% Names : BOOLE (57) [TS89]
% Status : Theorem
% Rating : 0.15 v9.0.0, 0.17 v8.2.0, 0.14 v7.5.0, 0.16 v7.4.0, 0.03 v7.2.0, 0.00 v7.0.0, 0.03 v6.4.0, 0.08 v6.1.0, 0.13 v6.0.0, 0.09 v5.5.0, 0.15 v5.4.0, 0.18 v5.3.0, 0.26 v5.2.0, 0.00 v5.0.0, 0.17 v4.0.1, 0.22 v4.0.0, 0.21 v3.7.0, 0.10 v3.5.0, 0.16 v3.3.0, 0.14 v3.2.0, 0.18 v3.1.0, 0.22 v2.7.0, 0.17 v2.6.0, 0.14 v2.5.0, 0.12 v2.4.0, 0.00 v2.2.1
% Syntax : Number of formulae : 9 ( 3 unt; 0 def)
% Number of atoms : 24 ( 4 equ)
% Maximal formula atoms : 6 ( 2 avg)
% Number of connectives : 15 ( 0 ~; 0 |; 6 &)
% ( 6 <=>; 3 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 5 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-2 aty)
% Number of functors : 1 ( 1 usr; 0 con; 2-2 aty)
% Number of variables : 23 ( 23 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%---- line(boole - th(37),1833277)
fof(intersection_is_subset,axiom,
! [B,C] : subset(intersection(B,C),B) ).
%---- line(boole - th(39),1833302)
fof(intersection_of_subsets,axiom,
! [B,C,D] :
( ( subset(B,C)
& subset(B,D) )
=> subset(B,intersection(C,D)) ) ).
%---- line(boole - df(3),1833060)
fof(intersection_defn,axiom,
! [B,C,D] :
( member(D,intersection(B,C))
<=> ( member(D,B)
& member(D,C) ) ) ).
%---- line(tarski - df(3),1832749)
fof(subset_defn,axiom,
! [B,C] :
( subset(B,C)
<=> ! [D] :
( member(D,B)
=> member(D,C) ) ) ).
%---- line(boole - df(8),1833103)
fof(equal_defn,axiom,
! [B,C] :
( B = C
<=> ( subset(B,C)
& subset(C,B) ) ) ).
%---- property(commutativity,op(intersection,2,function))
fof(commutativity_of_intersection,axiom,
! [B,C] : intersection(B,C) = intersection(C,B) ).
%---- property(reflexivity,op(subset,2,predicate))
fof(reflexivity_of_subset,axiom,
! [B] : subset(B,B) ).
%---- line(hidden - axiom86,1832615)
fof(equal_member_defn,axiom,
! [B,C] :
( B = C
<=> ! [D] :
( member(D,B)
<=> member(D,C) ) ) ).
%---- line(boole - th(57),1833602)
fof(prove_th57,conjecture,
! [B,C,D] :
( B = intersection(C,D)
<=> ( subset(B,C)
& subset(B,D)
& ! [E] :
( ( subset(E,C)
& subset(E,D) )
=> subset(E,B) ) ) ) ).
%--------------------------------------------------------------------------