TPTP Problem File: SET597+3.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET597+3 : TPTP v9.0.0. Released v2.2.0.
% Domain : Set Theory
% Problem : X = Y U Z iff Y (= X, Z (= X, !V: Y (= V & Z (= V, X (= V
% Version : [Try90] axioms : Reduced > Incomplete.
% English : X is the union of Y and Z if and only if the following
% conditions are satisfied: 1. Y is a subset of X, 2. Z is a
% subset of X, and 3. for every V such that Y is a subset of V
% and Z is a subset of V : X is a subset of V.
% Refs : [ILF] The ILF Group (1998), The ILF System: A Tool for the Int
% : [Try90] Trybulec (1990), Tarski Grothendieck Set Theory
% : [TS89] Trybulec & Swieczkowska (1989), Boolean Properties of
% Source : [ILF]
% Names : BOOLE (56) [TS89]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.17 v8.2.0, 0.14 v8.1.0, 0.17 v7.5.0, 0.19 v7.4.0, 0.07 v7.2.0, 0.03 v7.1.0, 0.00 v6.4.0, 0.04 v6.3.0, 0.08 v6.1.0, 0.17 v6.0.0, 0.13 v5.5.0, 0.19 v5.4.0, 0.21 v5.3.0, 0.30 v5.2.0, 0.00 v5.0.0, 0.17 v4.0.1, 0.22 v4.0.0, 0.21 v3.7.0, 0.10 v3.5.0, 0.16 v3.3.0, 0.14 v3.2.0, 0.18 v3.1.0, 0.22 v2.7.0, 0.17 v2.6.0, 0.14 v2.5.0, 0.12 v2.4.0, 0.00 v2.2.1
% Syntax : Number of formulae : 9 ( 3 unt; 0 def)
% Number of atoms : 24 ( 4 equ)
% Maximal formula atoms : 6 ( 2 avg)
% Number of connectives : 15 ( 0 ~; 1 |; 5 &)
% ( 6 <=>; 3 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 5 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-2 aty)
% Number of functors : 1 ( 1 usr; 0 con; 2-2 aty)
% Number of variables : 23 ( 23 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%---- line(boole - th(31),1833190)
fof(subset_of_union,axiom,
! [B,C] : subset(B,union(B,C)) ).
%---- line(boole - th(32),1833206)
fof(union_subset,axiom,
! [B,C,D] :
( ( subset(B,C)
& subset(D,C) )
=> subset(union(B,D),C) ) ).
%---- line(boole - df(2),1833042)
fof(union_defn,axiom,
! [B,C,D] :
( member(D,union(B,C))
<=> ( member(D,B)
| member(D,C) ) ) ).
%---- line(tarski - df(3),1832749)
fof(subset_defn,axiom,
! [B,C] :
( subset(B,C)
<=> ! [D] :
( member(D,B)
=> member(D,C) ) ) ).
%---- line(boole - df(8),1833103)
fof(equal_defn,axiom,
! [B,C] :
( B = C
<=> ( subset(B,C)
& subset(C,B) ) ) ).
%---- property(commutativity,op(union,2,function))
fof(commutativity_of_union,axiom,
! [B,C] : union(B,C) = union(C,B) ).
%---- property(reflexivity,op(subset,2,predicate))
fof(reflexivity_of_subset,axiom,
! [B] : subset(B,B) ).
%---- line(hidden - axiom84,1832615)
fof(equal_member_defn,axiom,
! [B,C] :
( B = C
<=> ! [D] :
( member(D,B)
<=> member(D,C) ) ) ).
%---- line(boole - th(56),1833583)
fof(prove_th56,conjecture,
! [B,C,D] :
( B = union(C,D)
<=> ( subset(C,B)
& subset(D,B)
& ! [E] :
( ( subset(C,E)
& subset(D,E) )
=> subset(B,E) ) ) ) ).
%--------------------------------------------------------------------------