TPTP Problem File: SET593+3.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET593+3 : TPTP v9.0.0. Released v2.2.0.
% Domain : Set Theory
% Problem : If X (= Y U Z, then X \ Y (= Z and X \ Z (= Y
% Version : [Try90] axioms : Reduced > Incomplete.
% English : If X is a subset of the union of Y and Z, then the difference
% of X and Y is a subset of Z and the difference of X and Z is
% a subset of Y.
% Refs : [ILF] The ILF Group (1998), The ILF System: A Tool for the Int
% : [Try90] Trybulec (1990), Tarski Grothendieck Set Theory
% : [TS89] Trybulec & Swieczkowska (1989), Boolean Properties of
% Source : [ILF]
% Names : BOOLE (52) [TS89]
% Status : Theorem
% Rating : 0.27 v9.0.0, 0.31 v8.2.0, 0.28 v8.1.0, 0.25 v7.5.0, 0.28 v7.4.0, 0.27 v7.3.0, 0.24 v7.2.0, 0.21 v7.1.0, 0.26 v7.0.0, 0.27 v6.4.0, 0.31 v6.3.0, 0.25 v6.2.0, 0.20 v6.1.0, 0.33 v6.0.0, 0.39 v5.5.0, 0.41 v5.4.0, 0.54 v5.3.0, 0.56 v5.2.0, 0.35 v5.1.0, 0.38 v5.0.0, 0.42 v4.1.0, 0.39 v4.0.1, 0.43 v4.0.0, 0.42 v3.7.0, 0.40 v3.5.0, 0.42 v3.3.0, 0.43 v3.2.0, 0.55 v3.1.0, 0.67 v2.7.0, 0.50 v2.6.0, 0.71 v2.5.0, 0.75 v2.4.0, 0.25 v2.3.0, 0.00 v2.2.1
% Syntax : Number of formulae : 7 ( 2 unt; 0 def)
% Number of atoms : 17 ( 2 equ)
% Maximal formula atoms : 3 ( 2 avg)
% Number of connectives : 11 ( 1 ~; 1 |; 2 &)
% ( 5 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 5 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-2 aty)
% Number of functors : 2 ( 2 usr; 0 con; 2-2 aty)
% Number of variables : 18 ( 18 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%---- line(boole - df(2),1833042)
fof(union_defn,axiom,
! [B,C,D] :
( member(D,union(B,C))
<=> ( member(D,B)
| member(D,C) ) ) ).
%---- line(boole - df(4),1833078)
fof(difference_defn,axiom,
! [B,C,D] :
( member(D,difference(B,C))
<=> ( member(D,B)
& ~ member(D,C) ) ) ).
%---- line(tarski - df(3),1832749)
fof(subset_defn,axiom,
! [B,C] :
( subset(B,C)
<=> ! [D] :
( member(D,B)
=> member(D,C) ) ) ).
%---- property(commutativity,op(union,2,function))
fof(commutativity_of_union,axiom,
! [B,C] : union(B,C) = union(C,B) ).
%---- property(reflexivity,op(subset,2,predicate))
fof(reflexivity_of_subset,axiom,
! [B] : subset(B,B) ).
%---- line(hidden - axiom74,1832615)
fof(equal_member_defn,axiom,
! [B,C] :
( B = C
<=> ! [D] :
( member(D,B)
<=> member(D,C) ) ) ).
%---- line(boole - th(52),1833522)
fof(prove_th52,conjecture,
! [B,C,D] :
( subset(B,union(C,D))
=> ( subset(difference(B,C),D)
& subset(difference(B,D),C) ) ) ).
%--------------------------------------------------------------------------