TPTP Problem File: SET591+3.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET591+3 : TPTP v9.0.0. Released v2.2.0.
% Domain : Set Theory
% Problem : If X (= Y \ X, then X = the empty set
% Version : [Try90] axioms : Reduced > Incomplete.
% English : If X is a subset of the difference of Y and X, then X is the
% empty set.
% Refs : [ILF] The ILF Group (1998), The ILF System: A Tool for the Int
% : [Try90] Trybulec (1990), Tarski Grothendieck Set Theory
% : [TS89] Trybulec & Swieczkowska (1989), Boolean Properties of
% Source : [ILF]
% Names : BOOLE (50) [TS89]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.08 v8.1.0, 0.06 v7.4.0, 0.07 v7.2.0, 0.03 v7.1.0, 0.04 v7.0.0, 0.07 v6.4.0, 0.08 v6.3.0, 0.12 v6.2.0, 0.08 v6.1.0, 0.07 v6.0.0, 0.13 v5.5.0, 0.07 v5.4.0, 0.04 v5.3.0, 0.11 v5.2.0, 0.00 v5.0.0, 0.04 v4.1.0, 0.09 v4.0.0, 0.08 v3.7.0, 0.05 v3.3.0, 0.00 v3.2.0, 0.09 v3.1.0, 0.00 v2.5.0, 0.12 v2.4.0, 0.25 v2.3.0, 0.33 v2.2.1
% Syntax : Number of formulae : 7 ( 2 unt; 0 def)
% Number of atoms : 15 ( 2 equ)
% Maximal formula atoms : 3 ( 2 avg)
% Number of connectives : 11 ( 3 ~; 0 |; 2 &)
% ( 4 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 5 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 4 ( 3 usr; 0 prp; 1-2 aty)
% Number of functors : 2 ( 2 usr; 1 con; 0-2 aty)
% Number of variables : 14 ( 14 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%---- line(tarski - df(3),1832749)
fof(subset_defn,axiom,
! [B,C] :
( subset(B,C)
<=> ! [D] :
( member(D,B)
=> member(D,C) ) ) ).
%---- line(boole - df(4),1833078)
fof(difference_defn,axiom,
! [B,C,D] :
( member(D,difference(B,C))
<=> ( member(D,B)
& ~ member(D,C) ) ) ).
%---- line(hidden - axiom66,1832636)
fof(empty_set_defn,axiom,
! [B] : ~ member(B,empty_set) ).
%---- line(boole - df(8),1833103)
fof(equal_defn,axiom,
! [B,C] :
( B = C
<=> ( subset(B,C)
& subset(C,B) ) ) ).
%---- property(reflexivity,op(subset,2,predicate))
fof(reflexivity_of_subset,axiom,
! [B] : subset(B,B) ).
%---- line(hidden - axiom68,1832628)
fof(empty_defn,axiom,
! [B] :
( empty(B)
<=> ! [C] : ~ member(C,B) ) ).
%---- line(boole - th(50),1833476)
fof(prove_th50,conjecture,
! [B,C] :
( subset(B,difference(C,B))
=> B = empty_set ) ).
%--------------------------------------------------------------------------