TPTP Problem File: SET590+3.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET590+3 : TPTP v9.0.0. Released v2.2.0.
% Domain : Set Theory
% Problem : The difference of X and Y is a subset of X
% Version : [Try90] axioms : Reduced > Incomplete.
% English :
% Refs : [ILF] The ILF Group (1998), The ILF System: A Tool for the Int
% : [Try90] Trybulec (1990), Tarski Grothendieck Set Theory
% : [TS89] Trybulec & Swieczkowska (1989), Boolean Properties of
% Source : [ILF]
% Names : BOOLE (49) [TS89]
% Status : Theorem
% Rating : 0.07 v9.0.0, 0.06 v8.2.0, 0.00 v6.3.0, 0.08 v6.2.0, 0.00 v5.4.0, 0.04 v5.3.0, 0.13 v5.2.0, 0.00 v2.2.1
% Syntax : Number of formulae : 4 ( 2 unt; 0 def)
% Number of atoms : 8 ( 0 equ)
% Maximal formula atoms : 3 ( 2 avg)
% Number of connectives : 5 ( 1 ~; 0 |; 1 &)
% ( 2 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 5 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 2 ( 2 usr; 0 prp; 2-2 aty)
% Number of functors : 1 ( 1 usr; 0 con; 2-2 aty)
% Number of variables : 9 ( 9 !; 0 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments :
%--------------------------------------------------------------------------
%---- line(boole - df(4),1833078)
fof(difference_defn,axiom,
! [B,C,D] :
( member(D,difference(B,C))
<=> ( member(D,B)
& ~ member(D,C) ) ) ).
%---- line(tarski - df(3),1832749)
fof(subset_defn,axiom,
! [B,C] :
( subset(B,C)
<=> ! [D] :
( member(D,B)
=> member(D,C) ) ) ).
%---- property(reflexivity,op(subset,2,predicate))
fof(reflexivity_of_subset,axiom,
! [B] : subset(B,B) ).
%---- line(boole - th(49),1833463)
fof(prove_th49,conjecture,
! [B,C] : subset(difference(B,C),B) ).
%--------------------------------------------------------------------------