TPTP Problem File: SET583+3.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET583+3 : TPTP v9.0.0. Released v2.2.0.
% Domain : Set Theory
% Problem : Extensionality
% Version : [Try90] axioms : Reduced > Incomplete.
% English :
% Refs : [ILF] The ILF Group (1998), The ILF System: A Tool for the Int
% : [TS89] Trybulec & Swieczkowska (1989), Boolean Properties of
% : [Try90] Trybulec (1990), Tarski Grothendieck Set Theory
% Source : [ILF]
% Names : BOOLE (28) [TS89]
% Status : Theorem
% Rating : 0.00 v5.3.0, 0.07 v5.2.0, 0.00 v2.5.0, 0.33 v2.4.0, 0.33 v2.2.1
% Syntax : Number of formulae : 4 ( 1 unt; 0 def)
% Number of atoms : 10 ( 2 equ)
% Maximal formula atoms : 3 ( 2 avg)
% Number of connectives : 6 ( 0 ~; 0 |; 2 &)
% ( 2 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 5 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-2 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 8 ( 8 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%---- line(boole - df(8),1833103)
fof(equal_defn,axiom,
! [B,C] :
( B = C
<=> ( subset(B,C)
& subset(C,B) ) ) ).
%---- line(tarski - df(3),1832749)
fof(subset_defn,axiom,
! [B,C] :
( subset(B,C)
<=> ! [D] :
( member(D,B)
=> member(D,C) ) ) ).
%---- property(reflexivity,op(subset,2,predicate))
fof(reflexivity_of_subset,axiom,
! [B] : subset(B,B) ).
%---- line(boole - th(28),1833154)
fof(prove_extensionality,conjecture,
! [B,C] :
( ( subset(B,C)
& subset(C,B) )
=> B = C ) ).
%--------------------------------------------------------------------------