TPTP Problem File: SET580+3.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET580+3 : TPTP v9.0.0. Released v2.2.0.
% Domain : Set Theory
% Problem : x is in X sym Y iff x is in X iff x is not in Y
% Version : [Try90] axioms : Reduced > Incomplete.
% English : x is in the symmetric difference of X and Y iff it is not the
% case x is in X iff x is in Y.
% Refs : [ILF] The ILF Group (1998), The ILF System: A Tool for the Int
% : [Try90] Trybulec (1990), Tarski Grothendieck Set Theory
% : [TS89] Trybulec & Swieczkowska (1989), Boolean Properties of
% Source : [ILF]
% Names : BOOLE (23) [TS89]
% Status : Theorem
% Rating : 0.21 v9.0.0, 0.22 v8.2.0, 0.19 v7.5.0, 0.22 v7.4.0, 0.17 v7.3.0, 0.10 v7.2.0, 0.07 v7.1.0, 0.13 v7.0.0, 0.10 v6.4.0, 0.15 v6.3.0, 0.08 v6.2.0, 0.12 v6.1.0, 0.20 v6.0.0, 0.13 v5.5.0, 0.22 v5.4.0, 0.25 v5.3.0, 0.33 v5.2.0, 0.10 v5.1.0, 0.14 v5.0.0, 0.17 v4.1.0, 0.22 v4.0.1, 0.26 v4.0.0, 0.25 v3.5.0, 0.21 v3.4.0, 0.32 v3.3.0, 0.29 v3.2.0, 0.36 v3.1.0, 0.44 v2.7.0, 0.33 v2.6.0, 0.29 v2.5.0, 0.38 v2.4.0, 0.50 v2.3.0, 0.33 v2.2.1
% Syntax : Number of formulae : 7 ( 3 unt; 0 def)
% Number of atoms : 15 ( 4 equ)
% Maximal formula atoms : 3 ( 2 avg)
% Number of connectives : 10 ( 2 ~; 1 |; 1 &)
% ( 6 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 5 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 2 ( 1 usr; 0 prp; 2-2 aty)
% Number of functors : 3 ( 3 usr; 0 con; 2-2 aty)
% Number of variables : 18 ( 18 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%------------------------------------------------------------------------------
%---- line(boole - df(2),1833042)
fof(union_defn,axiom,
! [B,C,D] :
( member(D,union(B,C))
<=> ( member(D,B)
| member(D,C) ) ) ).
%---- line(boole - df(4),1833078)
fof(difference_defn,axiom,
! [B,C,D] :
( member(D,difference(B,C))
<=> ( member(D,B)
& ~ member(D,C) ) ) ).
%---- line(boole - df(7),1833089)
fof(symmetric_difference_defn,axiom,
! [B,C] : symmetric_difference(B,C) = union(difference(B,C),difference(C,B)) ).
%---- property(commutativity,op(union,2,function))
fof(commutativity_of_union,axiom,
! [B,C] : union(B,C) = union(C,B) ).
%---- property(commutativity,op(symmetric_difference,2,function))
fof(commutativity_of_symmetric_difference,axiom,
! [B,C] : symmetric_difference(B,C) = symmetric_difference(C,B) ).
%---- line(hidden - axiom18,1832615)
fof(equal_member_defn,axiom,
! [B,C] :
( B = C
<=> ! [D] :
( member(D,B)
<=> member(D,C) ) ) ).
%---- line(boole - th(23),1833126)
fof(prove_th23,conjecture,
! [B,C,D] :
( member(B,symmetric_difference(C,D))
<=> ~ ( member(B,C)
<=> member(B,D) ) ) ).
%------------------------------------------------------------------------------