TPTP Problem File: SET579+3.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET579+3 : TPTP v9.0.0. Released v2.2.0.
% Domain : Set Theory
% Problem : Trybulec's 20th Boolean property of sets
% Version : [Try90] axioms : Reduced > Incomplete.
% English :
% Refs : [ILF] The ILF Group (1998), The ILF System: A Tool for the Int
% : [Try90] Trybulec (1990), Tarski Grothendieck Set Theory
% : [TS89] Trybulec & Swieczkowska (1989), Boolean Properties of
% Source : [ILF]
% Names : BOOLE (20) [TS89]
% Status : Theorem
% Rating : 0.21 v9.0.0, 0.17 v8.1.0, 0.14 v7.5.0, 0.16 v7.4.0, 0.13 v7.3.0, 0.14 v7.2.0, 0.10 v7.1.0, 0.09 v7.0.0, 0.13 v6.4.0, 0.12 v6.3.0, 0.17 v6.2.0, 0.16 v6.1.0, 0.20 v6.0.0, 0.30 v5.5.0, 0.26 v5.4.0, 0.29 v5.3.0, 0.30 v5.2.0, 0.20 v5.1.0, 0.24 v5.0.0, 0.25 v4.1.0, 0.22 v4.0.1, 0.30 v4.0.0, 0.29 v3.7.0, 0.25 v3.5.0, 0.26 v3.4.0, 0.32 v3.3.0, 0.36 v3.1.0, 0.44 v2.7.0, 0.33 v2.6.0, 0.43 v2.5.0, 0.50 v2.4.0, 0.25 v2.3.0, 0.00 v2.2.1
% Syntax : Number of formulae : 5 ( 1 unt; 0 def)
% Number of atoms : 14 ( 2 equ)
% Maximal formula atoms : 4 ( 2 avg)
% Number of connectives : 11 ( 2 ~; 0 |; 3 &)
% ( 4 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 9 ( 6 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-2 aty)
% Number of functors : 1 ( 1 usr; 0 con; 2-2 aty)
% Number of variables : 13 ( 13 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%---- line(boole - df(4),1833078)
fof(difference_defn,axiom,
! [B,C,D] :
( member(D,difference(B,C))
<=> ( member(D,B)
& ~ member(D,C) ) ) ).
%---- line(boole - df(8),1833103)
fof(equal_defn,axiom,
! [B,C] :
( B = C
<=> ( subset(B,C)
& subset(C,B) ) ) ).
%---- line(tarski - df(3),1832749)
fof(subset_defn,axiom,
! [B,C] :
( subset(B,C)
<=> ! [D] :
( member(D,B)
=> member(D,C) ) ) ).
%---- property(reflexivity,op(subset,2,predicate))
fof(reflexivity_of_subset,axiom,
! [B] : subset(B,B) ).
%---- line(boole - th(20),1833115)
fof(prove_th20,conjecture,
! [B,C,D] :
( ! [E] :
( member(E,B)
<=> ( member(E,C)
& ~ member(E,D) ) )
=> B = difference(C,D) ) ).
%--------------------------------------------------------------------------