TPTP Problem File: SET578+3.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET578+3 : TPTP v9.0.0. Released v2.2.0.
% Domain : Set Theory
% Problem : Trybulec's 19th Boolean property of sets
% Version : [Try90] axioms : Reduced > Incomplete.
% English :
% Refs : [ILF] The ILF Group (1998), The ILF System: A Tool for the Int
% : [Try90] Trybulec (1990), Tarski Grothendieck Set Theory
% : [TS89] Trybulec & Swieczkowska (1989), Boolean Properties of
% Source : [ILF]
% Names : BOOLE (19) [TS89]
% Status : Theorem
% Rating : 0.15 v9.0.0, 0.17 v8.2.0, 0.19 v8.1.0, 0.17 v7.5.0, 0.19 v7.4.0, 0.10 v7.2.0, 0.07 v7.1.0, 0.04 v7.0.0, 0.03 v6.4.0, 0.04 v6.3.0, 0.08 v6.2.0, 0.12 v6.1.0, 0.20 v6.0.0, 0.26 v5.5.0, 0.15 v5.4.0, 0.21 v5.3.0, 0.30 v5.2.0, 0.05 v5.0.0, 0.17 v3.7.0, 0.10 v3.5.0, 0.11 v3.4.0, 0.16 v3.3.0, 0.14 v3.2.0, 0.18 v3.1.0, 0.11 v2.7.0, 0.00 v2.2.1
% Syntax : Number of formulae : 7 ( 2 unt; 0 def)
% Number of atoms : 18 ( 4 equ)
% Maximal formula atoms : 4 ( 2 avg)
% Number of connectives : 11 ( 0 ~; 0 |; 3 &)
% ( 6 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 5 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-2 aty)
% Number of functors : 1 ( 1 usr; 0 con; 2-2 aty)
% Number of variables : 18 ( 18 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%---- line(boole - df(3),1833060)
fof(intersection_defn,axiom,
! [B,C,D] :
( member(D,intersection(B,C))
<=> ( member(D,B)
& member(D,C) ) ) ).
%---- line(boole - df(8),1833103)
fof(equal_defn,axiom,
! [B,C] :
( B = C
<=> ( subset(B,C)
& subset(C,B) ) ) ).
%---- property(commutativity,op(intersection,2,function))
fof(commutativity_of_intersection,axiom,
! [B,C] : intersection(B,C) = intersection(C,B) ).
%---- line(tarski - df(3),1832749)
fof(subset_defn,axiom,
! [B,C] :
( subset(B,C)
<=> ! [D] :
( member(D,B)
=> member(D,C) ) ) ).
%---- property(reflexivity,op(subset,2,predicate))
fof(reflexivity_of_subset,axiom,
! [B] : subset(B,B) ).
%---- line(hidden - axiom15,1832615)
fof(equal_member_defn,axiom,
! [B,C] :
( B = C
<=> ! [D] :
( member(D,B)
<=> member(D,C) ) ) ).
%---- line(boole - th(19),1833114)
fof(prove_th19,conjecture,
! [B,C,D] :
( ! [E] :
( member(E,B)
<=> ( member(E,C)
& member(E,D) ) )
=> B = intersection(C,D) ) ).
%--------------------------------------------------------------------------