TPTP Problem File: SET575^7.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET575^7 : TPTP v9.1.0. Released v5.5.0.
% Domain : Set Theory
% Problem : Trybulec's 15th Boolean property of sets
% Version : [Ben12] axioms.
% English :
% Refs : [Goe69] Goedel (1969), An Interpretation of the Intuitionistic
% : [TS89] Trybulec & Swieczkowska (1989), Boolean Properties of
% : [Try90] Trybulec (1990), Tarski Grothendieck Set Theory
% : [Ben12] Benzmueller (2012), Email to Geoff Sutcliffe
% Source : [Ben12]
% Names : s4-cumul-GSE575+3 [Ben12]
% Status : Theorem
% Rating : 0.22 v9.1.0, 0.25 v9.0.0, 0.30 v8.2.0, 0.38 v8.1.0, 0.45 v7.5.0, 0.57 v7.4.0, 0.33 v7.2.0, 0.25 v7.1.0, 0.38 v7.0.0, 0.29 v6.4.0, 0.33 v6.3.0, 0.40 v6.2.0, 0.43 v5.5.0
% Syntax : Number of formulae : 77 ( 33 unt; 38 typ; 32 def)
% Number of atoms : 158 ( 36 equ; 0 cnn)
% Maximal formula atoms : 26 ( 4 avg)
% Number of connectives : 217 ( 5 ~; 5 |; 9 &; 188 @)
% ( 0 <=>; 10 =>; 0 <=; 0 <~>)
% Maximal formula depth : 19 ( 3 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 186 ( 186 >; 0 *; 0 +; 0 <<)
% Number of symbols : 45 ( 43 usr; 7 con; 0-3 aty)
% Number of variables : 99 ( 58 ^; 34 !; 7 ?; 99 :)
% SPC : TH0_THM_EQU_NAR
% Comments : Goedel translation of SET575+3
%------------------------------------------------------------------------------
%----Include axioms for Modal logic S4 under cumulative domains
include('Axioms/LCL015^0.ax').
include('Axioms/LCL013^5.ax').
include('Axioms/LCL015^1.ax').
%------------------------------------------------------------------------------
thf(member_type,type,
member: mu > mu > $i > $o ).
thf(intersect_type,type,
intersect: mu > mu > $i > $o ).
thf(intersect_defn,axiom,
( mvalid
@ ( mbox_s4
@ ( mforall_ind
@ ^ [B: mu] :
( mbox_s4
@ ( mforall_ind
@ ^ [C: mu] :
( mand
@ ( mbox_s4
@ ( mimplies @ ( mbox_s4 @ ( intersect @ B @ C ) )
@ ( mexists_ind
@ ^ [D: mu] : ( mand @ ( mbox_s4 @ ( member @ D @ B ) ) @ ( mbox_s4 @ ( member @ D @ C ) ) ) ) ) )
@ ( mbox_s4
@ ( mimplies
@ ( mexists_ind
@ ^ [D: mu] : ( mand @ ( mbox_s4 @ ( member @ D @ B ) ) @ ( mbox_s4 @ ( member @ D @ C ) ) ) )
@ ( mbox_s4 @ ( intersect @ B @ C ) ) ) ) ) ) ) ) ) ) ).
thf(symmetry_of_intersect,axiom,
( mvalid
@ ( mbox_s4
@ ( mforall_ind
@ ^ [B: mu] :
( mbox_s4
@ ( mforall_ind
@ ^ [C: mu] : ( mbox_s4 @ ( mimplies @ ( mbox_s4 @ ( intersect @ B @ C ) ) @ ( mbox_s4 @ ( intersect @ C @ B ) ) ) ) ) ) ) ) ) ).
thf(prove_th15,conjecture,
( mvalid
@ ( mbox_s4
@ ( mforall_ind
@ ^ [B: mu] :
( mbox_s4
@ ( mforall_ind
@ ^ [C: mu] :
( mbox_s4
@ ( mimplies @ ( mbox_s4 @ ( intersect @ B @ C ) )
@ ( mexists_ind
@ ^ [D: mu] : ( mand @ ( mbox_s4 @ ( member @ D @ B ) ) @ ( mbox_s4 @ ( member @ D @ C ) ) ) ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------