TPTP Problem File: SET425-6.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET425-6 : TPTP v9.0.0. Bugfixed v2.1.0.
% Domain : Set Theory
% Problem : Single valued class alternate definition 1
% Version : [Qua92] axioms.
% English :
% Refs : [BL+86] Boyer et al. (1986), Set Theory in First-Order Logic:
% : [Qua92] Quaife (1992), Automated Deduction in von Neumann-Bern
% Source : [Quaife]
% Names : SV1 [Qua92]
% Status : Unknown
% Rating : 1.00 v2.1.0
% Syntax : Number of clauses : 118 ( 43 unt; 8 nHn; 85 RR)
% Number of literals : 224 ( 50 equ; 101 neg)
% Maximal clause size : 5 ( 1 avg)
% Maximal term depth : 6 ( 1 avg)
% Number of predicates : 11 ( 10 usr; 0 prp; 1-3 aty)
% Number of functors : 50 ( 50 usr; 16 con; 0-3 aty)
% Number of variables : 214 ( 32 sgn)
% SPC : CNF_UNK_RFO_SEQ_NHN
% Comments : Quaife proves all these problems by augmenting the axioms with
% all previously proved theorems. With a few exceptions (the
% problems that correspond to [BL+86] problems), the TPTP has
% retained the order in which Quaife presents the problems. The
% user may create an augmented version of this problem by adding
% all previously proved theorems (the ones that correspond to
% [BL+86] are easily identified and positioned using Quaife's
% naming scheme).
% Bugfixes : v1.0.1 - Bugfix in SET004-1.ax.
% : v2.1.0 - Bugfix in SET004-0.ax.
%--------------------------------------------------------------------------
%----Include von Neuman-Bernays-Godel set theory axioms
include('Axioms/SET004-0.ax').
%----Include von Neuman-Bernays-Godel Boolean Algebra definitions
include('Axioms/SET004-1.ax').
%--------------------------------------------------------------------------
cnf(prove_single_valued_class_alternate_defn1_1,negated_conjecture,
single_valued_class(z) ).
cnf(prove_single_valued_class_alternate_defn1_2,negated_conjecture,
member(ordered_pair(u,v),cross_product(universal_class,universal_class)) ).
cnf(prove_single_valued_class_alternate_defn1_3,negated_conjecture,
member(ordered_pair(u,w),cross_product(universal_class,universal_class)) ).
cnf(prove_single_valued_class_alternate_defn1_4,negated_conjecture,
member(ordered_pair(u,v),z) ).
cnf(prove_single_valued_class_alternate_defn1_5,negated_conjecture,
member(ordered_pair(u,w),z) ).
cnf(prove_single_valued_class_alternate_defn1_6,negated_conjecture,
v != w ).
%--------------------------------------------------------------------------